
Introduction Tree Matching Summary

Backward Tree Pattern Matching

J. Trávníček

Faculty of Information Technologies
Czech Technical University in Prague

MELA 2012
28. 9. 2012

Introduction Tree Matching Summary

Outline

1 Introduction
Motivation
Basic Notions

2 Tree Matching
Problem Definition
Backward subtree matching
Backward tree pattern matching

Introduction Tree Matching Summary

Outline

1 Introduction
Motivation
Basic Notions

2 Tree Matching
Problem Definition
Backward subtree matching
Backward tree pattern matching

Introduction Tree Matching Summary

Motivation

Arbology applies well known principles of string pattern
matching to processing of trees in linear notation.

Backward pattern matching (Boyer-Moore algorithm or
Horspool algorithm) in strings proved to be efficient for
various applications.

Tree in linear notation can be seen as string.

Introduction Tree Matching Summary

Outline

1 Introduction
Motivation
Basic Notions

2 Tree Matching
Problem Definition
Backward subtree matching
Backward tree pattern matching

Introduction Tree Matching Summary

Subject Tree

Ranked alphabet
A = {a2,a1,a0}

Unranked alphabet
A = {a, |}

Subject tree t in prefix
bar notation

pref _bar(t) = a a a | a a | | | a a | | |

Subject tree t in prefix
notation

pref (t) = a2 a2 a0 a1 a0 a1 a0

a2

a2

a0 a1

a0

a1

a0

Introduction Tree Matching Summary

Arity checksum

Arity checksum for trees in ranked alphabet:
ac(pref (t)) = arity(a1) + arity(a2) + . . .+ arity(am)−m + 1
=
∑m

i=1 arity(ai)− m + 1

Arity checksum for bar notation:
ac(pref _bar(t)) = |pref _bar(t)|a − |pref _bar(t)||

Introduction Tree Matching Summary

Tree properties

Trees in linear notation have arity checksum equal to zero.

Trees in linear notation have only trivial borders.

Introduction Tree Matching Summary

Outline

1 Introduction
Motivation
Basic Notions

2 Tree Matching
Problem Definition
Backward subtree matching
Backward tree pattern matching

Introduction Tree Matching Summary

Subtree

Alphabet of tree pattern

A = {a2,a1,a0}

Tree pattern p1 in prefix
notation

pref (p1) = a2 a0 a1 a0

a0

a0 a1

a2

Introduction Tree Matching Summary

Tree Pattern

Alphabet of tree pattern

A = {a2,a1,a0,S}

Tree pattern p2 in prefix
notation

pref (p2) = a2 S a1 S

S is a linear variable. S

S a1

a2

Introduction Tree Matching Summary

Tree Pattern (Subtree)

Subject tree

a2

a2

a0 a1

a0

a1

a0

Tree pattern

S

S a1

a2

Subtree

a0

a0 a1

a2

Introduction Tree Matching Summary

Outline

1 Introduction
Motivation
Basic Notions

2 Tree Matching
Problem Definition
Backward subtree matching
Backward tree pattern matching

Introduction Tree Matching Summary

Bad character shift

Bad character shift makes use of bad character shift table.

Length of the maximal safe shift is stored for each symbol.

Alphabet A = {a3,a2,a1,a0}, subtree pref (p1) = a2 a0 a1 a0.

Table: Bad character shift table

a3 a2 a1 a0

4 3 1 2

Introduction Tree Matching Summary

Good suffix shift

Good suffix shift makes use of good suffix shift table.

Length of the maximal safe shift is stored for the number of
sucessfully compared symbols.

Length of the maximal safe shift is limited by the border of
the pattern.

Subtree pref (p1) = a2 a0 a1 a0.

Table: Good suffix shift table

4 3 2 1 0
4 4 4 2 1

Introduction Tree Matching Summary

Other principles

Backward dawg matching

Backward factor matching

Backward oracle matching

Introduction Tree Matching Summary

Outline

1 Introduction
Motivation
Basic Notions

2 Tree Matching
Problem Definition
Backward subtree matching
Backward tree pattern matching

Introduction Tree Matching Summary

Related issues

Subject tree
pref (t) = a2 a2 a0 a1 a0 a1 a0

pref _bar(t) = a a a | a a | | | a a | | |

Tree pattern
pref (p2) = a2 S a1 S
pref _bar(p2) = a S | a S | | |

Subtree variable S is matched to more symbols.

Symbols matched to the subtree variable are "unknown".

Introduction Tree Matching Summary

Bad character shift

Again, length of the maximal safe shift is stored for each
symbol.

Both bar and ranked alphabet provide some usefull
information – combination of both can be used.

Alphabet A = {a3,a2,a1,a0, |}
Tree pattern pref _ranked_bar(p2) = a2 S | a1 S | | |
Length of the shift:

cannot exceed the size of the pattern, subtrees in place of
S variables are expected to be smallest possible.

is limited by the first ocurence of the particular symbol from
the end. Again subtrees in place of S variables are
expected to be smallest possible.

is limited by the possible ocurence of the particular symbol
in the subtree in place of the last S variable.

Introduction Tree Matching Summary

Bad character shift

Again, length of the maximal safe shift is stored for each
symbol.

Both bar and ranked alphabet provide some usefull
information – combination of both can be used.

Alphabet A = {a3,a2,a1,a0, |}
Tree pattern pref _ranked_bar(p2) = a2 S | a1 S | | |
Length of the shift:

cannot exceed the size of the pattern, subtrees in place of
S variables are expected to be smallest possible.

is limited by the first ocurence of the particular symbol from
the end. Again subtrees in place of S variables are
expected to be smallest possible.

is limited by the possible ocurence of the particular symbol
in the subtree in place of the last S variable.

Introduction Tree Matching Summary

Bad character shift

Again, length of the maximal safe shift is stored for each
symbol.

Both bar and ranked alphabet provide some usefull
information – combination of both can be used.

Alphabet A = {a3,a2,a1,a0, |}
Tree pattern pref _ranked_bar(p2) = a2 S | a1 S | | |
Length of the shift:

cannot exceed the size of the pattern, subtrees in place of
S variables are expected to be smallest possible.

is limited by the first ocurence of the particular symbol from
the end. Again subtrees in place of S variables are
expected to be smallest possible.

is limited by the possible ocurence of the particular symbol
in the subtree in place of the last S variable.

Introduction Tree Matching Summary

Bad character shift

Again, length of the maximal safe shift is stored for each
symbol.

Both bar and ranked alphabet provide some usefull
information – combination of both can be used.

Alphabet A = {a3,a2,a1,a0, |}
Tree pattern pref _ranked_bar(p2) = a2 S | a1 S | | |
Length of the shift:

cannot exceed the size of the pattern, subtrees in place of
S variables are expected to be smallest possible.

is limited by the first ocurence of the particular symbol from
the end. Again subtrees in place of S variables are
expected to be smallest possible.

is limited by the possible ocurence of the particular symbol
in the subtree in place of the last S variable.

Introduction Tree Matching Summary

Bad character shift cont.

Tree pattern pref _ranked_bar(p1) = a2 S | a1 S | | |.

Table: Bad character shift table

a3 a2 a1 a0 |

pattern length 8 8 8 8 8
first from right 7 4 1
inner subtree 9 7 5 3 3

min 8 7 4 3 1

a3: a2 S | a1 (a3 a0 | a0 | a0 |) | | |
a2: a2 S | a1 (a2 a0 | a0 |) | | |
a1: a2 S | a1 (a1 a0 |) | | |
a0: a2 S | a1 (a0) | | |

Introduction Tree Matching Summary

Summary

Future work
See if other methods of backward matching can be used for
matching tree patterns.
Investigate if backward matching can be modified for
nonlinear backward tree pattern matching.

Introduction Tree Matching Summary

More information on web pages

http://www.arbology.org

Thank you for your attention. Questions...?

	Introduction
	Motivation
	Basic Notions

	Tree Matching
	Problem Definition
	Backward subtree matching
	Backward tree pattern matching

