Backward Tree Pattern Matching

J. Travnicek

Faculty of Information Technologies
Czech Technical University in Prague

MELA 2012
28. 9. 2012

e Introduction
@ Motivation
@ Basic Notions

9 Tree Matching
@ Problem Definition
@ Backward subtree matching
@ Backward tree pattern matching

Introduction
[le]

Outline

e Introduction
@ Motivation

Introduction
oe

Motivation

@ Arbology applies well known principles of string pattern
matching to processing of trees in linear notation.

@ Backward pattern matching (Boyer-Moore algorithm or
Horspool algorithm) in strings proved to be efficient for
various applications.

@ Tree in linear notation can be seen as string.

Introduction
[eJele}

Outline

e Introduction

@ Basic Notions

Introduction
[e] Tele}

Subject Tree

@ Ranked alphabet
A ={az,a1,a0}
@ Unranked alphabet

A={a]} (a) (a)

@ Subject tree t in prefix
bar notation

pref_bar(t) =aaalaall||aall| @ @ @

@ Subject tree t in prefix
notation

pref(t) =aarapa;apaz ap @

Introduction
[e]e] e}

Arity checksum

@ Arity checksum for trees in ranked alphabet:
ac(pref(t)) = arity(a;) + arity(az) + ... +arity(am) —m+1
=y"" arity(a)—-m+1

@ Arity checksum for bar notation:
ac(pref_bar(t)) = [pref_bar(t)[a — [pref_bar(t)],

Introduction
[e]e]e]]

Tree properties

@ Trees in linear notation have arity checksum equal to zero.
@ Trees in linear notation have only trivial borders.

Tree Matching
[leJele]

9 Tree Matching
@ Problem Definition

Tree Matching
[e] Tele]

@ Alphabet of tree pattern
A ={az,a1,a0}

@ Tree pattern p; in prefix
notation

pref(p1) = az ag a; ap

Tree Matching
[e]e] o]

Tree Pattern

@ Alphabet of tree pattern @

A= {aZ) a, ap, S}

@ Tree pattern p, in prefix
notation e @

pFEf (pz) =a,Sa; S

@ Sis a linear variable. e

Tree Matching
[e]e]e]]

Tree Pattern (Subtree)

Subject tree Tree pattern Subtree

Tree Matching
[eJele]

9 Tree Matching

@ Backward subtree matching

Tree Matching
[e] Tele]

Bad character shift

@ Bad character shift makes use of bad character shift table.
@ Length of the maximal safe shift is stored for each symbol.

Alphabet A = {a3,a;,a;,a0}, subtree pref(p;) = a; ag a; ap.

Table: Bad character shift table

a3 a a3 Qo
4 3 1 2

Tree Matching
[e]e] o]

Good suffix shift

@ Good suffix shift makes use of good suffix shift table.

@ Length of the maximal safe shift is stored for the number of
sucessfully compared symbols.

@ Length of the maximal safe shift is limited by the border of
the pattern.

Subtree pref(p1) = a ag a1 ao.

Table: Good suffix shift table

4 3 2 1 0
4 4 4 2 1

Tree Matching
[e]e]e]]

Other principles

@ Backward dawg matching
@ Backward factor matching
@ Backward oracle matching

Tree Matching
[leJe]e}

9 Tree Matching

@ Backward tree pattern matching

Tree Matching
[o] Jele}

Related issues

Subject tree
pref(t) =ax arapa; ap a; ao
pref_bar(t)=aaalaal||aa]ll]

Tree pattern
pref(pz) =a2Sa; S
pref_bar(p,) =aS|aS|||

@ Subtree variable S is matched to more symbols.
@ Symbols matched to the subtree variable are "unknown".

Tree Matching
[e]e] e}

Bad character shift

@ Again, length of the maximal safe shift is stored for each
symbol.

@ Both bar and ranked alphabet provide some usefull
information — combination of both can be used.

Alphabet A = {az,ay, a1, ao, |}
Tree pattern pref_ranked_bar(p;) =a,S|a; S |||
Length of the shift:

Tree Matching
[e]e] e}

Bad character shift

@ Again, length of the maximal safe shift is stored for each
symbol.

@ Both bar and ranked alphabet provide some usefull
information — combination of both can be used.

Alphabet A = {az,ay, a1, ao, |}
Tree pattern pref_ranked_bar(p;) =a,S|a; S |||
Length of the shift:

@ cannot exceed the size of the pattern, subtrees in place of
S variables are expected to be smallest possible.

Tree Matching
[e]e] e}

Bad character shift

@ Again, length of the maximal safe shift is stored for each
symbol.

@ Both bar and ranked alphabet provide some usefull
information — combination of both can be used.

Alphabet A = {az,ay, a1, ao, |}
Tree pattern pref_ranked_bar(p;) =a,S|a; S |||
Length of the shift:
@ cannot exceed the size of the pattern, subtrees in place of
S variables are expected to be smallest possible.
@ is limited by the first ocurence of the particular symbol from

the end. Again subtrees in place of S variables are
expected to be smallest possible.

Tree Matching
[e]e] e}

Bad character shift

@ Again, length of the maximal safe shift is stored for each
symbol.

@ Both bar and ranked alphabet provide some usefull
information — combination of both can be used.

Alphabet A = {az,ay, a1, ao, |}
Tree pattern pref_ranked_bar(p;) =a,S|a; S |||
Length of the shift:

@ cannot exceed the size of the pattern, subtrees in place of
S variables are expected to be smallest possible.

@ is limited by the first ocurence of the particular symbol from
the end. Again subtrees in place of S variables are
expected to be smallest possible.

@ is limited by the possible ocurence of the particular symbol
in the subtree in place of the last S variable.

Tree Matching
[e]e]e]]

Bad character shift cont.

Tree pattern pref_ranked_bar(p;) =a, S|a;1 S |||

Table: Bad character shift table

ag a, a; ag |
patternlength 8 8 8 8 8
first from right 7 4 1
innersubtree 9 7 5 3 3
mn 8 7 4 3 1
a3:ayS |ay (asap|aglaol)||]|
a2:ayS|as(azaplag) |||
al:apS|ag(araol) |||
a0:a; S |az (ao) | ||

Summary

Summary

@ Future work

@ See if other methods of backward matching can be used for
matching tree patterns.

@ Investigate if backward matching can be modified for
nonlinear backward tree pattern matching.

Summary

More information on web pages
http://ww. ar bol ogy. org

Thank you for your attention. Questions...?

	Introduction
	Motivation
	Basic Notions

	Tree Matching
	Problem Definition
	Backward subtree matching
	Backward tree pattern matching

