More symmetries occurring in an infinite word Palindromic and G-palindromic defect

E. Pelantová¹ Š. Starosta²

¹Department of Mathematics Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

> ²Department of Applied Mathematics Faculty of Information Technology Czech Technical University in Prague

September 30, 2012

MELA 2012

Outline

Outline

Introduction

- Combinatorics on words
- Rauzy graphs
- 2 Words with finite palindromic defect
- 3 More symmetries: G-palindromic defect

Open questions

Introduction 00000	Words with finite palindromic defect 00	More symmetries: 00000000	G-palindromic defect	Open questions 0
Outline				

1 Introduction

- Combinatorics on words
- Rauzy graphs

2 Words with finite palindromic defect

3 More symmetries: G-palindromic defect

Open questions

Introduction	Words with finite palindromic defect	More symmetries:	G-palindromic defect	Open questions
●0000	00	00000000		O
Combin	atorics on words			

alphabet
$$\mathcal{A}$$
example $\{0,1\}$

infinite word
$$\mathbf{u} = (u_i)_{i=0}^{+\infty}$$
, $u_i \in \mathcal{A}$ 011010...

factor
$$w = u_k u_{k+1} \dots u_{k+n-1} \in \mathcal{A}^*$$
 01, 11, 10

language of u is the set of its factors, denoted $\mathcal{L}(u)$

.

oduction	Words with	finite	palindromic	defect
000	00			

More symmetries: G-palindromic defect

Open questions 0

Reversal mapping and its fixed points

reversal mapping R

Intr

$$R(w_0w_1\ldots w_n)=w_n\ldots w_1w_0$$

palindrome w = R(w)

examples: $0,00,010,\varepsilon$

n troduction	Words with fir	nite palindromic	defect	More symmetrie
0000	00			00000000

More symmetries: G-palindromic defect

Open questions 0

Reversal mapping and its fixed points

reversal mapping R

$$R(w_0w_1\ldots w_n)=w_n\ldots w_1w_0$$

palindrome w = R(w)

examples: $0,00,010,\varepsilon$

Introduction	Words with finite palindromic defect	More symmetries: <i>G</i> -palindromic defect	Open questions
○○●○○	00	00000000	O
Rauzy	m graphs~(1/2)		

Rauzy graph of order $n \in \mathbb{N}$

- is a subgraph of *n*-dimensional De Bruijn graph;
- represents factors of an infinite word up to the length n + 1.

vertices = factors of length *n*

there is an edge e from w to v if e is a factor of length n + 1 and there exist letters a and b such that e = wa = bv

Introduction	Words with finite palindromic defect	More symmetries: <i>G</i> -palindromic defect	Open questions
○○●○○	00	00000000	O
Rauzy	m graphs~(1/2)		

Rauzy graph of order $n \in \mathbb{N}$

- is a subgraph of *n*-dimensional De Bruijn graph;
- represents factors of an infinite word up to the length n + 1.

vertices = factors of length n

there is an edge e from w to v if e is a factor of length n + 1 and there exist letters a and b such that e = wa = bv

Introduction	Words with finite palindromic defect	More symmetries: <i>G</i> -palindromic defect	Open questions
○○●○○	00	00000000	O
Rauzy	m graphs~(1/2)		

Rauzy graph of order $n \in \mathbb{N}$

- is a subgraph of *n*-dimensional De Bruijn graph;
- represents factors of an infinite word up to the length n + 1.

vertices = factors of length n

there is an edge e from w to v if e is a factor of length n + 1 and there exist letters a and b such that e = wa = bv

$$\underbrace{w}_{w} \underbrace{e = wa = bv}_{v} \underbrace{v}_{v}$$

Introduction	Words with finite palindromic defect	More symmetries: <i>G</i> -palindromic defect	Open questions
○○○●○	00	00000000	0
Rauzy	m graphs~(2/2)		

Rauzy graph of order 3

transformation of Rauzy graph to reduced Rauzy graph of order 3

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
000●0	00	00000000	0
Rauzy g	m graphs~(2/2)		

transformation of Rauzy graph to reduced Rauzy graph of order 3

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
○○○●○	00	00000000	O
Rauzy	graphs $(2/2)$		

reduced Rauzy graph of order 3

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
00000	00	00000000	O
Rauzy	m graphs~(2/2)		

transformation of reduced to super reduced Rauzy graph of order 3

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
○○○●○	00	00000000	O
Rauzy	m graphs~(2/2)		

transformation of reduced to super reduced Rauzy graph of order 3

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
○○○●○	00	00000000	0
Rauzy	m graphs~(2/2)		

super reduced Rauzy graph of order 3

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
0000●	00	00000000	0
Rauzy g	graphs - applications		

Rauzy graph of order n of $\mathcal{L}(\mathbf{u})$ can be used to determine:

- factors up to the length n+1
- symmetries (palindromic complexity)
- special / bispecial factors (factor complexity)
- o ...

Return words cannot be determined.

Evolution of Rauzy graphs.

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
0000●	00	00000000	0
Rauzy g	graphs - applications	;	

Rauzy graph of order n of $\mathcal{L}(\mathbf{u})$ can be used to determine:

- factors up to the length n+1
- symmetries (palindromic complexity)
- special / bispecial factors (factor complexity)
- ...

Return words cannot be determined.

Evolution of Rauzy graphs.

Introduction	Words with finite palindromic defect	More symmetries: <i>G</i> -palindromic defect	Open questions
0000●	00	00000000	0
Rauzy g	graphs - applications		

Rauzy graph of order n of $\mathcal{L}(\mathbf{u})$ can be used to determine:

- factors up to the length n+1
- symmetries (palindromic complexity)
- special / bispecial factors (factor complexity)
- ...

Return words cannot be determined.

Evolution of Rauzy graphs.

Introduction	Words with finite palindromic defect	More symmetries: <i>G</i> -palindromic defect	Open questions
00000	00	00000000	0
Outline			

Introduction

- Combinatorics on words
- Rauzy graphs

2 Words with finite palindromic defect

More symmetries: G-palindromic defect

Open questions

ln tr o du	ction
00000	

Words with finite palindromic defect $\bullet \circ$

Words with finite palindromic defect

By $\Gamma_n(\mathbf{u})$ we denote the super reduced Rauzy graph of order *n* of an infinite word \mathbf{u} .

Definition

We say that an infinite word **u** has finite palindromic defect (or is almost rich/full) if $\mathcal{L}(\mathbf{u})$ is invariant under R and there exists $N \in \mathbb{N}$ such for each $n \ge N$ the following holds

- if e is a loop in $\Gamma_n(\mathbf{u})$, then e represents palindrome;
- the graph obtained from $\Gamma_n(\mathbf{u})$ by removing loops is a tree.

If N = 0, then we say that **u** has palindromic defect 0 (or is rich/full).

Examples: episturmian words, words coding symmetric interval exchange transformation, ...

ln tr o du	ction
00000	

Words with finite palindromic defect $\bullet \circ$

Words with finite palindromic defect

By $\Gamma_n(\mathbf{u})$ we denote the super reduced Rauzy graph of order *n* of an infinite word \mathbf{u} .

Definition

We say that an infinite word **u** has finite palindromic defect (or is almost rich/full) if $\mathcal{L}(\mathbf{u})$ is invariant under R and there exists $N \in \mathbb{N}$ such for each $n \ge N$ the following holds

- if e is a loop in $\Gamma_n(\mathbf{u})$, then e represents palindrome;
- the graph obtained from $\Gamma_n(\mathbf{u})$ by removing loops is a tree.

If N = 0, then we say that **u** has palindromic defect 0 (or is rich/full).

Examples: episturmian words, words coding symmetric interval exchange transformation, ...

ln tr o du	ction
00000	

Words with finite palindromic defect $\bullet \circ$

Words with finite palindromic defect

By $\Gamma_n(\mathbf{u})$ we denote the super reduced Rauzy graph of order *n* of an infinite word \mathbf{u} .

Definition

We say that an infinite word **u** has finite palindromic defect (or is almost rich/full) if $\mathcal{L}(\mathbf{u})$ is invariant under R and there exists $N \in \mathbb{N}$ such for each $n \ge N$ the following holds

- if e is a loop in $\Gamma_n(\mathbf{u})$, then e represents palindrome;
- the graph obtained from $\Gamma_n(\mathbf{u})$ by removing loops is a tree.

If N = 0, then we say that **u** has palindromic defect 0 (or is rich/full).

Examples: episturmian words, words coding symmetric interval exchange transformation, ...

Intr	o du	ctic	n
000	00		

Words with finite palindromic defect ○●

Characterizations of words with defect 0

For an infinite word \mathbf{u} with language invariant under R the following statements are equivalent:

- 1. u has palindromic defect 0;
- 2. the longest palindromic suffix of any factor $w \in \mathcal{L}(\mathbf{u})$ is unioccurrent in w;
- any complete return word of any palindromic factor of u is a palindrome;
- 4. for any factor w of \mathbf{u} , every factor of \mathbf{u} that contains w only as its prefix and R(w) only as its suffix is a palindrome;
- 5. for each n the following equality holds

$$\mathcal{C}(n+1) - \mathcal{C}(n) + 2 = \mathcal{P}(n) + \mathcal{P}(n+1).$$

[Droubay et al. 2001, Glen et al. 2009, Bucci et al. 2009]

Introduction 00000	Words with finite palindromic defect 00	More symmetries:	G-palindromic defect	Open questions 0
Outline				

Introduction

- Combinatorics on words
- Rauzy graphs

2 Words with finite palindromic defect

3 More symmetries: G-palindromic defect

Open questions

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defec	t Open questions
00000	00		○
Θ-palin	dromes		

let $\Theta : \mathcal{A}^* \mapsto \mathcal{A}^*$ be an involutive antimorphism, i.e., $\Theta^2 = \mathrm{Id}$ and $\Theta(wv) = \Theta(v)\Theta(w)$ for all $w, v \in \mathcal{A}^*$

 Θ -palindrome $w = \Theta(w)$

[Kari et al.; Anne et al., 2005; de Luca et al., 2006; ...]

Example: Watson-Crick complementarity $A \leftrightarrow T, G \leftrightarrow C$

Θ-palindromes: AT, AATT, AGCT

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defe	ct Open questions
00000	00		○
Θ-palin	dromes		

let $\Theta : \mathcal{A}^* \mapsto \mathcal{A}^*$ be an involutive antimorphism, i.e., $\Theta^2 = \mathrm{Id}$ and $\Theta(wv) = \Theta(v)\Theta(w)$ for all $w, v \in \mathcal{A}^*$

 Θ -palindrome $w = \Theta(w)$

[Kari et al.; Anne et al., 2005; de Luca et al., 2006; ...]

Example: Watson-Crick complementarity $A \leftrightarrow T, G \leftrightarrow C$

Θ-palindromes: AT, AATT, AGCT

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defe	ct Open questions
00000	00	•0000000	0
Θ-palin	dromes		

let $\Theta : \mathcal{A}^* \mapsto \mathcal{A}^*$ be an involutive antimorphism, i.e., $\Theta^2 = \mathrm{Id}$ and $\Theta(wv) = \Theta(v)\Theta(w)$ for all $w, v \in \mathcal{A}^*$

 Θ -palindrome $w = \Theta(w)$

[Kari et al.; Anne et al., 2005; de Luca et al., 2006; ...]

Example: Watson-Crick complementarity $A \leftrightarrow T, G \leftrightarrow C$

Θ-palindromes: AT, AATT, AGCT

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defe	ct Open questions
00000	00	○●○○○○○○	0
More sy	vmmetries		

Let \mathbf{u} be an infinite word over \mathcal{A} .

Let G be a finite group consisting of morphisms and antimorphisms over A such that $\mathcal{L}(\mathbf{u})$ is invariant under all elements of G.

In this context, invariance under R is the same as invariance under all elements of the group $\{Id, R\}$.

 $[w] = \{\nu(w) \mid \nu \in G\}$

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
00000	00	0●000000	O
More sy	vmmetries		

Let \mathbf{u} be an infinite word over \mathcal{A} .

Let G be a finite group consisting of morphisms and antimorphisms over A such that $\mathcal{L}(\mathbf{u})$ is invariant under all elements of G.

In this context, invariance under R is the same as invariance under all elements of the group $\{Id, R\}$.

 $[w] = \{\nu(w) \mid \nu \in G\}$

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
00000	00	0●000000	O
More sy	vmmetries		

Let \mathbf{u} be an infinite word over \mathcal{A} .

Let G be a finite group consisting of morphisms and antimorphisms over A such that $\mathcal{L}(\mathbf{u})$ is invariant under all elements of G.

In this context, invariance under R is the same as invariance under all elements of the group $\{Id, R\}$.

 $[w] = \{\nu(w) \mid \nu \in G\}$

Introduction 00000 Words with finite palindromic defect ∞

More symmetries: G-palindromic defect

Open questions 0

Graph of symmetries of the Thue-Morse word

the Thue-Morse word is a fixed point of the morphism $0\mapsto 01, 1\mapsto 10$

Introduction 00000 Words with finite palindromic defect ∞

More symmetries: G-palindromic defect

Open questions 0

Graph of symmetries of the Thue-Morse word

the Thue-Morse word is a fixed point of the morphism $0\mapsto 01,1\mapsto 10$

Introduction Words with finite palindromic defect

More symmetries: G-palindromic defect

Open questions 0

Graph of symmetries of the Thue-Morse word

the Thue-Morse word is a fixed point of the morphism $0 \mapsto 01, 1 \mapsto 10$, its language is invariant under $\Psi : 0 \mapsto 1, 1 \mapsto 0$

Introduction Words with finite palindromic defect

More symmetries: G-palindromic defect

Open questions 0

Graph of symmetries of the Thue-Morse word

the Thue-Morse word is a fixed point of the morphism $0 \mapsto 01, 1 \mapsto 10$, its language is invariant under $\Psi : 0 \mapsto 1, 1 \mapsto 0$

Introduction 00000

Words with finite palindromic defect ∞

More symmetries: G-palindromic defect

Open questions 0

Graph of symmetries of the Thue-Morse word

the Thue-Morse word is a fixed point of the morphism $0\mapsto 01,1\mapsto 10$, its language is invariant under $\Psi:0\mapsto 1,1\mapsto 0$

Introduction 00000 Words with finite palindromic defect ∞

More symmetries: G-palindromic defect

Open questions 0

Graph of symmetries of the Thue-Morse word

the Thue-Morse word is a fixed point of the morphism $0\mapsto 01, 1\mapsto 10$

ln tr o du	ction
00000	

Words with finite palindromic defect ∞

Graph of symmetries - definition

The directed graph of symmetries of the word **u** of order *n*, denoted is $\overrightarrow{\Gamma}_n(\mathbf{u})$, is the graph (V, \overrightarrow{E}) such that

$$V = \big\{ [w] \mid w \in \mathcal{L}(\mathbf{u}), |w| = n, w \text{ is special } \big\}$$

and an edge $e \in \vec{E} \subset \mathcal{L}(\mathbf{u})$ starts in a vertex [w] and ends in a vertex [v], if

- the prefix of e of length n belongs to [w],
- the suffix of e of length n belongs to [v],
- e has exactly two occurrences of special factors of length n.

The **graph of symmetries** of the word **u** of order *n*, denoted $\Gamma_n(\mathbf{u})$, is the graph (V, E) with the same set of vertices as $\overrightarrow{\Gamma}_n(\mathbf{u})$ and for any $e \in \mathcal{L}(\mathbf{u})$ we have

$$[e] \in E \qquad \Longleftrightarrow \qquad e \in \vec{E}.$$

ln tr o du	ction
00000	

Words with finite palindromic defect ∞

Graph of symmetries - definition

The directed graph of symmetries of the word **u** of order *n*, denoted is $\overrightarrow{\Gamma}_n(\mathbf{u})$, is the graph (V, \overrightarrow{E}) such that

$$V = \big\{ [w] \mid w \in \mathcal{L}(\mathbf{u}), |w| = n, w \text{ is special } \big\}$$

and an edge $e \in \vec{E} \subset \mathcal{L}(\mathbf{u})$ starts in a vertex [w] and ends in a vertex [v], if

- the prefix of e of length n belongs to [w],
- the suffix of e of length n belongs to [v],
- e has exactly two occurrences of special factors of length n.

The graph of symmetries of the word \mathbf{u} of order n, denoted $\Gamma_n(\mathbf{u})$, is the graph (V, E) with the same set of vertices as $\overrightarrow{\Gamma}_n(\mathbf{u})$ and for any $e \in \mathcal{L}(\mathbf{u})$ we have

$$[e] \in E \quad \iff \quad e \in \overrightarrow{E}.$$

Introduction 00000 Words with finite palindromic defect

More symmetries: G-palindromic defect

Open questions 0

Words having finite G-defect

Definition

Let $G \subset AM(\mathcal{A}^*)$ be a finite group containing at least one antimorphism. We say that an infinite word **u** has finite *G*-defect (or almost *G*-rich) if $\mathcal{L}(\mathbf{u})$ is invariant under all elements of *G* and there exists $N \in \mathbb{N}$ such that for each n > N the following holds:

 if [e] is a loop in Γ_n(**u**), then e is a Θ-palindrome for some involutive antimorphism Θ ∈ G;

• the graph obtained from $\Gamma_n(\mathbf{u})$ by removing loops is a tree.

If N = 0, we say that **u** has G-defect 0 (or G-rich).

The Thue-Morse word has $\{ \mathrm{Id}, R, \Psi, R\Psi \}$ -defect 0.

Intro	du	ct	io	n	
000	00				

Words with finite palindromic defect

More symmetries: G-palindromic defect

Open questions 0

Words having finite G-defect

Definition

Let $G \subset AM(\mathcal{A}^*)$ be a finite group containing at least one antimorphism. We say that an infinite word **u** has finite *G*-defect (or almost *G*-rich) if $\mathcal{L}(\mathbf{u})$ is invariant under all elements of *G* and there exists $N \in \mathbb{N}$ such that for each n > N the following holds:

 if [e] is a loop in Γ_n(**u**), then e is a Θ-palindrome for some involutive antimorphism Θ ∈ G;

• the graph obtained from $\Gamma_n(\mathbf{u})$ by removing loops is a tree.

If N = 0, we say that **u** has G-defect 0 (or G-rich).

The Thue-Morse word has $\{ \mathrm{Id}, R, \Psi, R\Psi \}$ -defect 0.

Intro	du	ct	io	n	
000	00				

Words with finite palindromic defect

More symmetries: G-palindromic defect

Open questions 0

Words having finite G-defect

Definition

Let $G \subset AM(\mathcal{A}^*)$ be a finite group containing at least one antimorphism. We say that an infinite word **u** has finite *G*-defect (or almost *G*-rich) if $\mathcal{L}(\mathbf{u})$ is invariant under all elements of *G* and there exists $N \in \mathbb{N}$ such that for each n > N the following holds:

 if [e] is a loop in Γ_n(**u**), then e is a Θ-palindrome for some involutive antimorphism Θ ∈ G;

• the graph obtained from $\Gamma_n(\mathbf{u})$ by removing loops is a tree.

If N = 0, we say that **u** has G-defect 0 (or G-rich).

The Thue-Morse word has $\{Id, R, \Psi, R\Psi\}$ -defect 0.

ln tr o du	ction
00000	

Words with finite palindromic defect ∞

Characterizations of words with G-defect 0

As in the case of palindromic defect, such words are fully saturated by generalized palindromes.

Theorem

Let **u** be an infinite word with language closed under all elements of *G*. The following conditions are equivalent:

- u has G-defect 0;
- of all v ∈ L(u) the G-longest palindromic suffix of v is G-unioccurrent in v or the last letter of v is G-unioccurrent in v;
- for all w ∈ L(u) every complete G-return word of [w] is a G-palindrome;

Introduction 00000 Words with finite palindromic defect 00

More symmetries: G-palindromic defect

Open questions 0

Characterizations of words with finite G-defect

Theorem

Let **u** be a **uniformly recurrent** infinite word with language closed under all elements of *G*. The following conditions are equivalent:

- u has finite G-defect;
- ② there exists an integer N such that for all $v \in \mathcal{L}(\mathbf{u})$, |v| > N, the G-longest palindromic suffix of v is G-unioccurrent in v or the last letter of v is G-unioccurrent in v;
- there exists an integer N such that for all w ∈ L(u) of length greater than N every complete G-return word of [w] is a G-palindrome;
- there exists an integer N such that

$$\Delta \mathcal{C}(n) + \# \mathcal{G} = \sum_{\Theta \in \mathcal{G}^{(2)}} \Bigl(\mathcal{P}_{\Theta}(n) + \mathcal{P}_{\Theta}(n+1) \Bigr) \qquad \textit{for all } n \geq N;$$

Intro	du	ctio	n
0000	00		

Words with finite palindromic defect

More symmetries: G-palindromic defect

Open questions 0

G-defect and Coxeter groups

If there exists a word with finite G-defect, then G is a Coxeter group.

Every so-called generalized Thue-Morse word [Allouche et al., 2000] has zero *G*-defect where *G* is isomorphic to a dihedral group.

Introduction 00000	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions 0

G-defect and Coxeter groups

If there exists a word with finite G-defect, then G is a Coxeter group.

Every so-called generalized Thue-Morse word [Allouche et al., 2000] has zero G-defect where G is isomorphic to a dihedral group.

Introduction	Words with finite palindromic defect	More symmetries:	G-palindromic defect	Open questions
00000	00	00000000		O
Outline				

Introduction

- Combinatorics on words
- Rauzy graphs

2 Words with finite palindromic defect

3 More symmetries: G-palindromic defect

Open questions

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
00000	00	00000000	●
Open q	uestions		

Given (finite Coxeter group) G, is there a G-rich word? Can it be constructed as a fixed point of a morphism?

Is an almost G₁-rich word related to a G₂-rich word if G₁ is isomorphic to G₂.

- Onjecture: the G-defect of an aperiodic fixed point of a primitive non-injective morphism 0 or $+\infty$.
- Given *n*, how many *G*-rich words of length *n* exist?

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
00000	00	00000000	●
Open q	uestions		

• Given (finite Coxeter group) G, is there a G-rich word? Can it be constructed as a fixed point of a morphism?

Is an almost G₁-rich word related to a G₂-rich word if G₁ is isomorphic to G₂.

- ⁽³⁾ Conjecture: the G-defect of an aperiodic fixed point of a primitive non-injective morphism 0 or $+\infty$.
- Given *n*, how many *G*-rich words of length *n* exist?

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
00000	00	00000000	●
Open q	uestions		

- Given (finite Coxeter group) G, is there a G-rich word? Can it be constructed as a fixed point of a morphism?
- ② Is an almost G_1 -rich word related to a G_2 -rich word if G_1 is isomorphic to G_2 .
- Onjecture: the G-defect of an aperiodic fixed point of a primitive non-injective morphism 0 or $+\infty$.
- Given *n*, how many *G*-rich words of length *n* exist?

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
00000	00	00000000	●
Open q	uestions		

- Given (finite Coxeter group) G, is there a G-rich word? Can it be constructed as a fixed point of a morphism?
- ② Is an almost G_1 -rich word related to a G_2 -rich word if G_1 is isomorphic to G_2 .
- Solution Conjecture: the G-defect of an aperiodic fixed point of a primitive non-injective morphism 0 or $+\infty$.

Given *n*, how many *G*-rich words of length *n* exist?

Introduction	Words with finite palindromic defect	More symmetries: G-palindromic defect	Open questions
00000	00	00000000	●
Open q	uestions		

- Given (finite Coxeter group) G, is there a G-rich word? Can it be constructed as a fixed point of a morphism?
- ② Is an almost G_1 -rich word related to a G_2 -rich word if G_1 is isomorphic to G_2 .
- Solution Conjecture: the G-defect of an aperiodic fixed point of a primitive non-injective morphism 0 or $+\infty$.
- Given *n*, how many *G*-rich words of length *n* exist?

Thank you for your attention.