More symmetries occurring in an infinite word Palindromic and G-palindromic defect

E. Pelantová ${ }^{1} \quad$ Š. Starosta ${ }^{2}$
${ }^{1}$ Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague
${ }^{2}$ Department of Applied Mathematics Faculty of Information Technology
Czech Technical University in Prague

September 30, 2012
MELA 2012

Outline

(1) Introduction

- Combinatorics on words
- Rauzy graphs
(2) Words with finite palindromic defect
(3) More symmetries: G-palindromic defect

4 Open questions

Outline

(1) Introduction

- Combinatorics on words
- Rauzy graphs
(2) Words with finite palindromic defect
(3) More symmetries: G-palindromic defect

4 Open questions

Combinatorics on words

alphabet \mathcal{A}

example
$\{0,1\}$
infinite word $\mathbf{u}=\left(u_{i}\right)_{i=0}^{+\infty}, u_{i} \in \mathcal{A}$
factor $w=u_{k} u_{k+1} \ldots u_{k+n-1} \in \mathcal{A}^{*}$
language of \mathbf{u} is the set of its factors, denoted $\mathcal{L}(\mathbf{u})$

Reversal mapping and its fixed points

reversal mapping R

$$
R\left(w_{0} w_{1} \ldots w_{n}\right)=w_{n} \ldots w_{1} w_{0}
$$

palindrome $w=R(w)$
examples: $0,00,010, \varepsilon$

Reversal mapping and its fixed points

reversal mapping R

$$
R\left(w_{0} w_{1} \ldots w_{n}\right)=w_{n} \ldots w_{1} w_{0}
$$

palindrome $w=R(w)$
examples: $0,00,010, \varepsilon$

Rauzy graphs (1/2)

Rauzy graph of order $n \in \mathbb{N}$

- is a subgraph of n-dimensional De Bruijn graph;
- represents factors of an infinite word up to the length $n+1$.
vertices $=$ factors of length n

Rauzy graphs (1/2)

Rauzy graph of order $n \in \mathbb{N}$

- is a subgraph of n-dimensional De Bruijn graph;
- represents factors of an infinite word up to the length $n+1$.
vertices $=$ factors of length n
there is an edge e from w to v if e is a factor of length $n+1$ and there exist letters a and b such that $e=w a=b v$

Rauzy graphs (1/2)

Rauzy graph of order $n \in \mathbb{N}$

- is a subgraph of n-dimensional De Bruijn graph;
- represents factors of an infinite word up to the length $n+1$.
vertices $=$ factors of length n
there is an edge e from w to v if e is a factor of length $n+1$ and there exist letters a and b such that $e=w a=b v$

Rauzy graphs (2/2)

Language of an infinite word $000100010001110001000100011 \ldots$
Rauzy graph of order 3

Rauzy graphs (2/2)

Language of an infinite word $000100010001110001000100011 \ldots$ transformation of Rauzy graph to reduced Rauzy graph of order 3

Rauzy graphs (2/2)

Language of an infinite word $000100010001110001000100011 \ldots$ transformation of Rauzy graph to reduced Rauzy graph of order 3

Rauzy graphs (2/2)
Language of an infinite word $000100010001110001000100011 \ldots$ reduced Rauzy graph of order 3

Rauzy graphs (2/2)

Language of an infinite word $000100010001110001000100011 \ldots$ reduced Rauzy graph of order 3 , the language is closed under R

Rauzy graphs (2/2)

Language of an infinite word $000100010001110001000100011 \ldots$ transformation of reduced to super reduced Rauzy graph of order 3

Rauzy graphs (2/2)

Language of an infinite word $000100010001110001000100011 \ldots$ transformation of reduced to super reduced Rauzy graph of order 3

Rauzy graphs (2/2)

Language of an infinite word $000100010001110001000100011 \ldots$
super reduced Rauzy graph of order 3

Rauzy graphs - applications

Rauzy graph of order n of $\mathcal{L}(\mathbf{u})$ can be used to determine:

- factors up to the length $n+1$
- symmetries (palindromic complexity)
- special / bispecial factors (factor complexity)
- ...

Return words cannot be determined.

Evolution of Rauzy graphs.

Rauzy graphs - applications

Rauzy graph of order n of $\mathcal{L}(\mathbf{u})$ can be used to determine:

- factors up to the length $n+1$
- symmetries (palindromic complexity)
- special / bispecial factors (factor complexity)
- ...

Return words cannot be determined.

Evolution of Rauzy graphs.

Rauzy graphs - applications

Rauzy graph of order n of $\mathcal{L}(\mathbf{u})$ can be used to determine:

- factors up to the length $n+1$
- symmetries (palindromic complexity)
- special / bispecial factors (factor complexity)
- ...

Return words cannot be determined.

Evolution of Rauzy graphs.

Outline

(1) Introduction

- Combinatorics on words
- Rauzy graphs
(2) Words with finite palindromic defect
(3) More symmetries: G-palindromic defect

4 Open questions

Words with finite palindromic defect

By $\Gamma_{n}(\mathbf{u})$ we denote the super reduced Rauzy graph of order n of an infinite word \mathbf{u}.

Definition

We say that an infinite word \mathbf{u} has finite palindromic defect (or is almost rich/full) if $\mathcal{L}(\mathbf{u})$ is invariant under R and there exists $N \in \mathbb{N}$ such for each $n \geq N$ the following holds

- if e is a loop in $\Gamma_{n}(\mathbf{u})$, then e represents palindrome;
- the graph obtained from $\Gamma_{n}(\mathbf{u})$ by removing loops is a tree.
\square

[^0]
Words with finite palindromic defect

$B y \Gamma_{n}(\mathbf{u})$ we denote the super reduced Rauzy graph of order n of an infinite word \mathbf{u}.

Definition

We say that an infinite word \mathbf{u} has finite palindromic defect (or is almost rich/full) if $\mathcal{L}(\mathbf{u})$ is invariant under R and there exists $N \in \mathbb{N}$ such for each $n \geq N$ the following holds

- if e is a loop in $\Gamma_{n}(\mathbf{u})$, then e represents palindrome;
- the graph obtained from $\Gamma_{n}(\mathbf{u})$ by removing loops is a tree.

If $N=0$, then we say that \mathbf{u} has palindromic defect 0 (or is rich/full).

Examples: episturmian words, words coding symmetric interval exchange transformation,

Words with finite palindromic defect

$B y \Gamma_{n}(\mathbf{u})$ we denote the super reduced Rauzy graph of order n of an infinite word \mathbf{u}.

Definition

We say that an infinite word \mathbf{u} has finite palindromic defect (or is almost rich/full) if $\mathcal{L}(\mathbf{u})$ is invariant under R and there exists $N \in \mathbb{N}$ such for each $n \geq N$ the following holds

- if e is a loop in $\Gamma_{n}(\mathbf{u})$, then e represents palindrome;
- the graph obtained from $\Gamma_{n}(\mathbf{u})$ by removing loops is a tree.

If $N=0$, then we say that \mathbf{u} has palindromic defect 0 (or is rich/full).

Examples: episturmian words, words coding symmetric interval exchange transformation, ...

Characterizations of words with defect 0

For an infinite word \mathbf{u} with language invariant under R the following statements are equivalent:

1. u has palindromic defect 0 ;
2. the longest palindromic suffix of any factor $w \in \mathcal{L}(\mathbf{u})$ is unioccurrent in w;
3. any complete return word of any palindromic factor of \mathbf{u} is a palindrome;
4. for any factor w of \mathbf{u}, every factor of \mathbf{u} that contains w only as its prefix and $R(w)$ only as its suffix is a palindrome;
5. for each n the following equality holds

$$
\mathcal{C}(n+1)-\mathcal{C}(n)+2=\mathcal{P}(n)+\mathcal{P}(n+1) .
$$

[Droubay et al. 2001, Glen et al. 2009, Bucci et al. 2009]

Outline

(1) Introduction

- Combinatorics on words
- Rauzy graphs
(2) Words with finite palindromic defect
(3) More symmetries: G-palindromic defect

4 Open questions

Θ-palindromes

let $\Theta: \mathcal{A}^{*} \mapsto \mathcal{A}^{*}$ be an involutive antimorphism, i.e., $\Theta^{2}=\mathrm{Id}$ and $\Theta(w v)=\Theta(v) \Theta(w)$ for all $w, v \in \mathcal{A}^{*}$
Θ-palindrome $w=\Theta(w)$
[Kari et al.; Anne et al., 2005; de Luca et al., 2006; ...]
Example: Watson-Crick complementarity $A \leftrightarrow T, G \leftrightarrow C$
Θ-palindromes: AT, AATT, AGCT

Θ-palindromes

let $\Theta: \mathcal{A}^{*} \mapsto \mathcal{A}^{*}$ be an involutive antimorphism, i.e., $\Theta^{2}=\mathrm{Id}$ and $\Theta(w v)=\Theta(v) \Theta(w)$ for all $w, v \in \mathcal{A}^{*}$
Θ-palindrome $w=\Theta(w)$
[Kari et al.; Anne et al., 2005; de Luca et al., 2006; ...]
Example: Watson-Crick complementarity $A \leftrightarrow T, G \leftrightarrow C$
Θ-palindromes: AT, AATT, AGCT

Θ-palindromes

let $\Theta: \mathcal{A}^{*} \mapsto \mathcal{A}^{*}$ be an involutive antimorphism, i.e., $\Theta^{2}=\mathrm{Id}$ and $\Theta(w v)=\Theta(v) \Theta(w)$ for all $w, v \in \mathcal{A}^{*}$
Θ-palindrome $w=\Theta(w)$
[Kari et al.; Anne et al., 2005; de Luca et al., 2006; ...]
Example: Watson-Crick complementarity $A \leftrightarrow T, G \leftrightarrow C$
Θ-palindromes: AT, AATT, AGCT

More symmetries

Let u be an infinite word over \mathcal{A}.

Let G be a finite group consisting of morphisms and antimorphisms over \mathcal{A} such that $\mathcal{L}(\mathbf{u})$ is invariant under all elements of G.

In this context, invariance under R is the same as invariance under all elements of the group $\{\mathrm{Id}, R\}$
$[w]=\{\nu(w) \mid \nu \in G\}$

More symmetries

Let u be an infinite word over \mathcal{A}.

Let G be a finite group consisting of morphisms and antimorphisms over \mathcal{A} such that $\mathcal{L}(\mathbf{u})$ is invariant under all elements of G.

In this context, invariance under R is the same as invariance under all elements of the group $\{\mathrm{Id}, R\}$.
$[w]=\{\nu(w) \mid \nu \in G\}$

More symmetries

Let u be an infinite word over \mathcal{A}.

Let G be a finite group consisting of morphisms and antimorphisms over \mathcal{A} such that $\mathcal{L}(\mathbf{u})$ is invariant under all elements of G.

In this context, invariance under R is the same as invariance under all elements of the group $\{\mathrm{Id}, R\}$.
$[w]=\{\nu(w) \mid \nu \in G\}$

Graph of symmetries of the Thue-Morse word

 the Thue-Morse word is a fixed point of the morphism $0 \mapsto 01,1 \mapsto 10$

Graph of symmetries of the Thue-Morse word

 the Thue-Morse word is a fixed point of the morphism $0 \mapsto 01,1 \mapsto 10$

Graph of symmetries of the Thue-Morse word

the Thue-Morse word is a fixed point of the morphism $0 \mapsto 01,1 \mapsto 10$, its language is invariant under $\psi: 0 \mapsto 1,1 \mapsto 0$

Graph of symmetries of the Thue-Morse word

the Thue-Morse word is a fixed point of the morphism $0 \mapsto 01,1 \mapsto 10$, its language is invariant under $\Psi: 0 \mapsto 1,1 \mapsto 0$

Graph of symmetries of the Thue-Morse word

the Thue-Morse word is a fixed point of the morphism $0 \mapsto 01,1 \mapsto 10$, its language is invariant under $\Psi: 0 \mapsto 1,1 \mapsto 0$

Graph of symmetries of the Thue-Morse word

the Thue-Morse word is a fixed point of the morphism $0 \mapsto 01,1 \mapsto 10$

Graph of symmetries - definition

The directed graph of symmetries of the word \mathbf{u} of order n, denoted is $\vec{\Gamma}_{n}(\mathbf{u})$, is the graph (V, \vec{E}) such that

$$
V=\{[w]|w \in \mathcal{L}(\mathbf{u}),|w|=n, w \text { is special }\}
$$

and an edge $e \in \vec{E} \subset \mathcal{L}(\mathbf{u})$ starts in a vertex $[w]$ and ends in a vertex [v], if

- the prefix of e of length n belongs to $[w]$,
- the suffix of e of length n belongs to $[v]$,
- e has exactly two occurrences of special factors of length n.

Graph of symmetries - definition

The directed graph of symmetries of the word \mathbf{u} of order n, denoted is $\vec{\Gamma}_{n}(\mathbf{u})$, is the graph (V, \vec{E}) such that

$$
V=\{[w]|w \in \mathcal{L}(\mathbf{u}),|w|=n, w \text { is special }\}
$$

and an edge $e \in \vec{E} \subset \mathcal{L}(\mathbf{u})$ starts in a vertex $[w]$ and ends in a vertex [v], if

- the prefix of e of length n belongs to $[w]$,
- the suffix of e of length n belongs to [v],
- e has exactly two occurrences of special factors of length n.

The graph of symmetries of the word \mathbf{u} of order n, denoted $\Gamma_{n}(\mathbf{u})$, is the graph (V, E) with the same set of vertices as $\vec{\Gamma}_{n}(\mathbf{u})$ and for any $e \in \mathcal{L}(\mathbf{u})$ we have

$$
[e] \in E \quad \Longleftrightarrow \quad e \in \vec{E}
$$

Words having finite G-defect

Definition

Let $G \subset A M\left(\mathcal{A}^{*}\right)$ be a finite group containing at least one antimorphism. We say that an infinite word \mathbf{u} has finite G-defect (or almost G-rich) if $\mathcal{L}(\mathbf{u})$ is invariant under all elements of G and there exists $N \in \mathbb{N}$ such that for each $n>N$ the following holds:

- if $[e]$ is a loop in $\Gamma_{n}(\mathbf{u})$, then e is a Θ-palindrome for some involutive antimorphism $\Theta \in G$;
- the graph obtained from $\Gamma_{n}(\mathbf{u})$ by removing loops is a tree.

If $N=0$, we say that u has G-defect 0 (or G-rich)

The Thue-Morse word has $\{\operatorname{Id}, R, \Psi, R \Psi\}$-defect 0 .

Words having finite G-defect

Definition

Let $G \subset A M\left(\mathcal{A}^{*}\right)$ be a finite group containing at least one antimorphism. We say that an infinite word \mathbf{u} has finite G-defect (or almost G-rich) if $\mathcal{L}(\mathbf{u})$ is invariant under all elements of G and there exists $N \in \mathbb{N}$ such that for each $n>N$ the following holds:

- if $[e]$ is a loop in $\Gamma_{n}(\mathbf{u})$, then e is a Θ-palindrome for some involutive antimorphism $\Theta \in G$;
- the graph obtained from $\Gamma_{n}(\mathbf{u})$ by removing loops is a tree.

If $N=0$, we say that \mathbf{u} has G-defect 0 (or G-rich).

The Thue-Morse word has $\{\operatorname{Id}, R, \Psi, R \Psi\}$-defect 0 .

Words having finite G-defect

Definition

Let $G \subset A M\left(\mathcal{A}^{*}\right)$ be a finite group containing at least one antimorphism. We say that an infinite word \mathbf{u} has finite G-defect (or almost G-rich) if $\mathcal{L}(\mathbf{u})$ is invariant under all elements of G and there exists $N \in \mathbb{N}$ such that for each $n>N$ the following holds:

- if $[e]$ is a loop in $\Gamma_{n}(\mathbf{u})$, then e is a Θ-palindrome for some involutive antimorphism $\Theta \in G$;
- the graph obtained from $\Gamma_{n}(\mathbf{u})$ by removing loops is a tree.

If $N=0$, we say that \mathbf{u} has G-defect 0 (or G-rich).

The Thue-Morse word has $\{\operatorname{Id}, R, \Psi, R \Psi\}$-defect 0 .

Characterizations of words with G-defect 0

As in the case of palindromic defect, such words are fully saturated by generalized palindromes.

Theorem

Let \mathbf{u} be an infinite word with language closed under all elements of G. The following conditions are equivalent:
(1) u has G-defect 0 ;
(2) for all $v \in \mathcal{L}(\mathbf{u})$ the G-longest palindromic suffix of v is G-unioccurrent in v or the last letter of v is G-unioccurrent in v;
(3) for all $w \in \mathcal{L}(\mathbf{u})$ every complete G-return word of $[w]$ is a G-palindrome;

Characterizations of words with finite G-defect

Theorem

Let u be a uniformly recurrent infinite word with language closed under all elements of G. The following conditions are equivalent:
(1) u has finite G-defect;
(2) there exists an integer N such that for all $v \in \mathcal{L}(\mathbf{u}),|v|>N$, the G-longest palindromic suffix of v is G-unioccurrent in v or the last letter of v is G-unioccurrent in v;
(3) there exists an integer N such that for all $w \in \mathcal{L}(\mathbf{u})$ of length greater than N every complete G-return word of $[w]$ is a G-palindrome;
(c) there exists an integer N such that

$$
\Delta \mathcal{C}(n)+\# G=\sum_{\Theta \in G^{(2)}}\left(\mathcal{P}_{\Theta}(n)+\mathcal{P}_{\Theta}(n+1)\right) \quad \text { for all } n \geq N
$$

G-defect and Coxeter groups

If there exists a word with finite G-defect, then G is a Coxeter group.

Every so-called generalized Thue-Morse word [Allouche et al., 2000] has zero G-defect where G is isomorphic to a dihedral group.

4 1

G-defect and Coxeter groups

If there exists a word with finite G-defect, then G is a Coxeter group.

Every so-called generalized Thue-Morse word [Allouche et al., 2000] has zero G-defect where G is isomorphic to a dihedral group.

More symmetries: G-palindromic defect 00000000

Open questions

Outline

(1) Introduction

- Combinatorics on words
- Rauzy graphs
(2) Words with finite palindromic defect
(3) More symmetries: G-palindromic defect

4 Open questions

Open questions

(1) Given (finite Coxeter group) G, is there a G-rich word? be constructed as a fixed point of a morphism?
(2) Is an almost G_{1}-rich word related to a G_{2}-rich word if G_{1} is isomorphic to G_{2}.
(3) Conjecture: the G-defect of an aperiodic fixed point of a primitive non-injective morphism 0 or $+\infty$.
(- Given n, how many G-rich words of length n exist?

Open questions

(1) Given (finite Coxeter group) G, is there a G-rich word? Can it be constructed as a fixed point of a morphism?
(2) Is an almost G_{1}-rich word related to a G_{2}-rich word if G_{1} is isomorphic to G_{2}.
(3) Conjecture: the G-defect of an aperiodic fixed point of a primitive non-injective morphism 0 or $+\infty$.
(© Given n, how many G-rich words of length n exist?

Open questions

(1) Given (finite Coxeter group) G, is there a G-rich word? Can it be constructed as a fixed point of a morphism?
(2) Is an almost G_{1}-rich word related to a G_{2}-rich word if G_{1} is isomorphic to G_{2}.
(3) Conjecture: the G-defect of an aperiodic fixed point of a primitive non-injective morphism 0 or $+\infty$.
(- Given n, how many G-rich words of length n exist?

Open questions

(1) Given (finite Coxeter group) G, is there a G-rich word? Can it be constructed as a fixed point of a morphism?
(2) Is an almost G_{1}-rich word related to a G_{2}-rich word if G_{1} is isomorphic to G_{2}.
(3) Conjecture: the G-defect of an aperiodic fixed point of a primitive non-injective morphism 0 or $+\infty$.
© Given n, how many G-rich words of length n exist?

Open questions

(1) Given (finite Coxeter group) G, is there a G-rich word? Can it be constructed as a fixed point of a morphism?
(2) Is an almost G_{1}-rich word related to a G_{2}-rich word if G_{1} is isomorphic to G_{2}.
(3) Conjecture: the G-defect of an aperiodic fixed point of a primitive non-injective morphism 0 or $+\infty$.
(1) Given n, how many G-rich words of length n exist?

Thank you for your attention.

[^0]: Examples: episturmian words, words coding symmetric interval exchange transformation,

