Biautomata for *k*-Piecewise Testable Languages

Ondřej Klíma and Libor Polák

Institute of Mathematics and Statistics Masaryk University, Brno Czech Republic

MeLa 2012 (DLT 2012)

Ondřej Klíma and Libor Polák Biautomata for *k*-Piecewise Testable Languages

< □ > < 同 > < 回 > < 回 > < 回 >

Topic of the Talk

Biautomata

Ondřej Klíma and Libor Polák Biautomata for *k*-Piecewise Testable Languages

・ロン ・聞と ・ 聞と

æ

Topic of the Talk

• Biautomata - a new notion (Klíma, Polák - NCMA'11).

Ondřej Klíma and Libor Polák Biautomata for *k*-Piecewise Testable Languages

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Topic of the Talk

- Biautomata a new notion (Klíma, Polák NCMA'11).
- Piecewise testable languages

< ロ > < 同 > < 回 > < 回 > < □ > <

Topic of the Talk

- Biautomata a new notion (Klíma, Polák NCMA'11).
- Piecewise testable languages
 - are studied in the algebraic theory of regular languages,

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

э

Topic of the Talk

- Biautomata a new notion (Klíma, Polák NCMA'11).
- Piecewise testable languages
 - are studied in the algebraic theory of regular languages,
 - were characterized by Simon (via syntactic monoids),

Topic of the Talk

- Biautomata a new notion (Klíma, Polák NCMA'11).
- Piecewise testable languages
 - are studied in the algebraic theory of regular languages,
 - were characterized by Simon (via syntactic monoids),
 - form level 1 in the Straubing-Thérien hierarchy of star-free languages.

Topic of the Talk

- Biautomata a new notion (Klíma, Polák NCMA'11).
- Piecewise testable languages
 - are studied in the algebraic theory of regular languages,
 - were characterized by Simon (via syntactic monoids),
 - form level 1 in the Straubing-Thérien hierarchy of star-free languages.

Note: An effective characterization of level 2 is an open problem for 40 years.

- Introduction
- Biautomata
- Our New Results

프 🖌 🛪 프 🕨

э

I. Introduction

Ondřej Klíma and Libor Polák Biautomata for k-Piecewise Testable Languages

・ロン ・聞 と ・ ヨ と ・ ヨ と

∃ 990

Introduction	Piecewise Testable Language
Biautomata	
Our New Results	Main Result

Piecewise Testable Languages

Definition

A language *L* over an alphabet *A* is called piecewise testable if it is a Boolean combination of languages of the form

 $A^*a_1A^*a_2A^*...A^*a_\ell A^*$, where $a_1,...,a_\ell \in A, \ \ell \ge 0$. (*)

伺 とく ヨ とく ヨ とう

Introduction	Piecewise Testable Languages
Biautomata	
Our New Results	Main Result

Piecewise Testable Languages

Definition

A language *L* over an alphabet *A* is called piecewise testable if it is a Boolean combination of languages of the form

 $A^*a_1A^*a_2A^*...A^*a_\ell A^*$, where $a_1,...,a_\ell \in A, \ \ell \ge 0$. (*)

Theorem (Simon '72)

A regular language L is piecewise testable if and only if the syntactic monoid M(L) of L is \mathcal{J} -trivial.

< ロ > < 同 > < 回 > < 回 > .

Introduction	Piecewise Testable Languages
Biautomata	
Our New Results	Main Result

Piecewise Testable Languages

Definition

A language *L* over an alphabet *A* is called piecewise testable if it is a Boolean combination of languages of the form

 $A^*a_1A^*a_2A^*...A^*a_\ell A^*$, where $a_1,...,a_\ell \in A, \ \ell \ge 0$. (*)

Theorem (Simon '72)

A regular language L is piecewise testable if and only if the syntactic monoid M(L) of L is \mathcal{J} -trivial.

Definition

A language *L* is called *k*-piecewise testable if *L* can be written as a Boolean combination of languages of the form (*) with $\ell \leq k$.

k-piecewise Testable Languages

• Question (for each *k*) : The *k*-piecewise testability.

< ロ > < 同 > < 回 > < 回 > < □ > <

э

k-piecewise Testable Languages

- Question (for each *k*) : The *k*-piecewise testability.
- Solution: The least *k* such that a given piecewise testable language *L* is *k*-piecewise testable can be found by brute-force algorithms.

< 回 > < 回 > < 回 >

k-piecewise Testable Languages

- Question (for each *k*) : The *k*-piecewise testability.
- Solution: The least *k* such that a given piecewise testable language *L* is *k*-piecewise testable can be found by brute-force algorithms.
 - For each fixed *k* and a fixed alphabet *A*, there are only finitely many *k*-piecewise testable languages over *A*.

k-piecewise Testable Languages

- Question (for each *k*) : The *k*-piecewise testability.
- Solution: The least *k* such that a given piecewise testable language *L* is *k*-piecewise testable can be found by brute-force algorithms.
 - For each fixed *k* and a fixed alphabet *A*, there are only finitely many *k*-piecewise testable languages over *A*.
 - A bit sophisticated algorithm: via Eilenberg's correspondence (using relatively free monoids).

< 同 > < 回 > < 回 >

k-piecewise Testable Languages

- Question (for each *k*) : The *k*-piecewise testability.
- Solution: The least *k* such that a given piecewise testable language *L* is *k*-piecewise testable can be found by brute-force algorithms.
 - For each fixed *k* and a fixed alphabet *A*, there are only finitely many *k*-piecewise testable languages over *A*.
 - A bit sophisticated algorithm: via Eilenberg's correspondence (using relatively free monoids).

Both methods are unrealistic in practice.

• Also using identies does not help (no finite bases in general).

< □ > < 同 > < 回 > < 回 > < 回 >

Our ambition, in this contribution, is not to decide the *k*-piecewise testability in a reasonable computational time.

< □ > < 同 > < 回 > < 回 > < 回 >

э

Our ambition, in this contribution, is not to decide the *k*-piecewise testability in a reasonable computational time.

Instead of that, for a given piecewise testable language L, we would like to find a good estimate, i.e. a (possibly small) number k, such that L is k-piecewise testable.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □

Our ambition, in this contribution, is not to decide the *k*-piecewise testability in a reasonable computational time.

Instead of that, for a given piecewise testable language L, we would like to find a good estimate, i.e. a (possibly small) number k, such that L is k-piecewise testable.

• Simon: k = 2n - 1 where *n* is the maximal length of a \mathcal{J} -chain in the syntactic monoid of *L*.

Our ambition, in this contribution, is not to decide the *k*-piecewise testability in a reasonable computational time.

Instead of that, for a given piecewise testable language L, we would like to find a good estimate, i.e. a (possibly small) number k, such that L is k-piecewise testable.

- Simon: k = 2n 1 where *n* is the maximal length of a \mathcal{J} -chain in the syntactic monoid of *L*.
- OK: k = ℓ + r 2 where ℓ and r are the maximal lengths of chains for the orderings ≤_L and ≤_R.

Our ambition, in this contribution, is not to decide the *k*-piecewise testability in a reasonable computational time.

Instead of that, for a given piecewise testable language L, we would like to find a good estimate, i.e. a (possibly small) number k, such that L is k-piecewise testable.

- Simon: k = 2n 1 where *n* is the maximal length of a \mathcal{J} -chain in the syntactic monoid of *L*.
- OK: k = ℓ + r 2 where ℓ and r are the maximal lengths of chains for the orderings ≤_L and ≤_R.

Note: $\ell \leq n$ and $r \leq n$ and hence $\ell + r - 2 < 2n - 1$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Our ambition, in this contribution, is not to decide the *k*-piecewise testability in a reasonable computational time.

Instead of that, for a given piecewise testable language L, we would like to find a good estimate, i.e. a (possibly small) number k, such that L is k-piecewise testable.

- Simon: k = 2n 1 where *n* is the maximal length of a \mathcal{J} -chain in the syntactic monoid of *L*.
- OK: k = ℓ + r 2 where ℓ and r are the maximal lengths of chains for the orderings ≤_L and ≤_R.

Note: $\ell \leq n$ and $r \leq n$ and hence $\ell + r - 2 < 2n - 1$.

We found a different proof (OK+LP: NCMA'11) of Simon's result using a notion of biautomaton.

ヘロト ヘ戸ト ヘヨト ヘヨト

 Introduction
 Piecewise Testable Languages

 Biautomata
 Basic Goal

 Our New Results
 Main Result

Biautomaton Characterization

Theorem (OK+LP '11)

A language L is piecewise testable if and only if its canonical biautomaton C_L of L is acyclic.

• Note: Loops are not considered as cycles.

< ロ > < 同 > < 回 > < 回 > < □ > <

 Introduction
 Piecewise Testable Languages

 Biautomata
 Basic Goal

 Our New Results
 Main Result

Biautomaton Characterization

Theorem (OK+LP '11)

A language L is piecewise testable if and only if its canonical biautomaton C_L of L is acyclic.

- Note: Loops are not considered as cycles.
- The core of the proof was to show that if C_L has m states then L is 2m-piecewise testable.

(日)

Biautomaton Characterization

Theorem (OK+LP '11)

A language L is piecewise testable if and only if its canonical biautomaton C_L of L is acyclic.

- Note: Loops are not considered as cycles.
- The core of the proof was to show that if C_L has m states then L is 2m-piecewise testable.
- Here we improve this result in two directions:
 - We eliminate the coefficient 2,
 - We replace the size of C_L by the depth of the biautomaton.

A depth of an acyclic biautomaton \mathcal{B} is the length of the longest simple path in \mathcal{B} .

< ロ > < 同 > < 回 > < 回 > .

The main result of our contribution:

Theorem

Let L be a piecewise testable language with an (acyclic) canonical biautomaton of depth k. Then L is k-piecewise testable.

< ロ > < 同 > < 回 > < 回 > .

э

Introduction	Piecewise Testable Languages
Biautomata	
Our New Results	Main Result

II. Biautomata

Ondřej Klíma and Libor Polák Biautomata for *k*-Piecewise Testable Languages

・ロン ・聞 と ・ ヨ と ・ ヨ と

Introduction Definiti Biautomata Basic F Our New Results Canon

Definition of Biautomata Basic Properties Canonical Biautomaton

Informal Description of Biautomata

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

э

Informal Description of Biautomata

 The heads read symbols alternately, not depending on the current state of the finite control or on the symbol read from the tape.

< 回 > < 回 > < 回 >

Informal Description of Biautomata

- The heads read symbols alternately, not depending on the current state of the finite control or on the symbol read from the tape.
- The acceptance of a word depends neither on the position, in which the heads meet, nor on the sequence of states the finite control goes through.

< ロ > < 同 > < 回 > < 回 > < 回 >

Formal Definition of Biautomata

Definition (OK+LP – NCMA 2011)

A *biautomaton* is a sixtuple $\mathcal{B} = (Q, A, \cdot, \circ, i, T)$ where

- (1) Q is a non-empty finite set of states,
- (2) A is a finite alphabet,
- (3) \cdot : $Q \times A \rightarrow Q$ is a left action,
- (4) $\circ: Q \times A \rightarrow Q$ is a right action,
- (5) $i \in Q$ is the initial state,
- (6) $T \subseteq Q$ is the set of terminal states,
- (7) $(q \cdot a) \circ b = (q \circ b) \cdot a$ for each $q \in Q$ and $a, b \in A$,
- (8) $q \cdot a \in T$ if and only if $q \circ a \in T$ for each $q \in Q$ and $a \in A$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Formal Definition of Biautomata

Definition (OK+LP – NCMA 2011)

A *biautomaton* is a sixtuple $\mathcal{B} = (Q, A, \cdot, \circ, i, T)$ where

- (1) Q is a non-empty finite set of states,
- (2) A is a finite alphabet,
- (3) \cdot : $Q \times A \rightarrow Q$ is a left action,
- (4) $\circ: Q \times A \rightarrow Q$ is a right action,
- (5) $i \in Q$ is the initial state,
- (6) $T \subseteq Q$ is the set of terminal states,

(7') $(q \cdot u) \circ v = (q \circ v) \cdot u$ for each $q \in Q$ and $u, v \in A^*$,

(8') $q \cdot u \in T$ if and only if $q \circ u \in T$ for each $q \in Q$ and $u \in A^*$.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Example 1

< □ > < 🗗

물 🖌 🛪 물 🕨

æ

Example 1

The diagram represents a biautomaton; it is not acyclic.

Ondřej Klíma and Libor Polák Biautomata for *k*-Piecewise Testable Languages

∃ ► < ∃</p>

Introduction	Definition of Biautomata
Biautomata	Basic Properties
Our New Results	Canonical Biautomaton

æ

Introduction	Definition of Biautomata
Biautomata	Basic Properties
Our New Results	Canonical Biautomaton

The biautomaton is acyclic.

Introduction	Definition of Biautomata
Biautomata	Basic Properties
Our New Results	Canonical Biautomaton

The biautomaton is acyclic. Its depth is 3.

Acceptance of an Input Word

• The biautomaton \mathcal{B} accepts a given word $u \in A^*$ if $i \cdot u \in T$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Introduction	Definition of Biautomata
Biautomata	Basic Properties
ur New Results	Canonical Biautomaton

- The biautomaton \mathcal{B} accepts a given word $u \in A^*$ if $i \cdot u \in T$.
- \mathcal{B} accepts $u \in A^*$ iff $i \circ u \in T$.

Introduction	Definition of Biautomata
Biautomata	Basic Properties
ur New Results	Canonical Biautomaton

- The biautomaton \mathcal{B} accepts a given word $u \in A^*$ if $i \cdot u \in T$.
- \mathcal{B} accepts $u \in A^*$ iff $i \circ u \in T$.
- But \mathcal{B} can read the word u in many other ways:

Introduction	Definition of Biautoma
Biautomata	Basic Properties
ur New Results	Canonical Biautomato

- The biautomaton \mathcal{B} accepts a given word $u \in A^*$ if $i \cdot u \in T$.
- \mathcal{B} accepts $u \in A^*$ iff $i \circ u \in T$.
- But \mathcal{B} can read the word u in many other ways: We can divide $u = u_1 u_2 \dots u_k v_k \dots v_2 v_1$ arbitrarily, where $u_1, \dots, v_1 \in A^*$, and we read u_1 from left first, then v_1 from right, then u_2 from left, and so on.

Introduction	Definition of Biautoma
Biautomata	Basic Properties
ur New Results	Canonical Biautomato

- The biautomaton \mathcal{B} accepts a given word $u \in A^*$ if $i \cdot u \in T$.
- \mathcal{B} accepts $u \in A^*$ iff $i \circ u \in T$ iff $q \in T$.
- But \mathcal{B} can read the word u in many other ways: We can divide $u = u_1 u_2 \dots u_k v_k \dots v_2 v_1$ arbitrarily, where $u_1, \dots, v_1 \in A^*$, and we read u_1 from left first, then v_1 from right, then u_2 from left, and so on.

< □ > < 同 > < 回 > < 回 >

Basic Properties of Biautomata

The part { *i* · *u* | *u* ∈ *A** } ⊆ Q together with the left actions is a DFA, which recognizes the same language.

< ロ > < 同 > < 回 > < 回 > < □ > <

Basic Properties of Biautomata

- The part { *i* · *u* | *u* ∈ *A** } ⊆ Q together with the left actions is a DFA, which recognizes the same language.
- From a finite deterministic automaton one can construct a biautomaton which recognizes the same language.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Basic Properties of Biautomata

- The part { *i* · *u* | *u* ∈ *A** } ⊆ Q together with the left actions is a DFA, which recognizes the same language.
- From a finite deterministic automaton one can construct a biautomaton which recognizes the same language.
- Biautomata recognize exactly regular languages.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □

Basic Properties of Biautomata

- The part { *i* · *u* | *u* ∈ *A** } ⊆ Q together with the left actions is a DFA, which recognizes the same language.
- From a finite deterministic automaton one can construct a biautomaton which recognizes the same language.
- Biautomata recognize exactly regular languages.
- There is a minimal biautomaton recognizing a given regular language *L* and it is unique up to isomorphism.

Basic Properties of Biautomata

- The part { *i* · *u* | *u* ∈ *A** } ⊆ Q together with the left actions is a DFA, which recognizes the same language.
- From a finite deterministic automaton one can construct a biautomaton which recognizes the same language.
- Biautomata recognize exactly regular languages.
- There is a minimal biautomaton recognizing a given regular language *L* and it is unique up to isomorphism.

The so called canonical biautomaton is an analogy of Brzozowski's construction of a minimal complete deterministic automaton. It uses two-sided derivatives:

< ロ > < 同 > < 回 > < 回 > < □ > <

Introduction	Definition of Biautomata
Biautomata	Basic Properties
ur New Results	Canonical Biautomaton

Canonical Biautomaton

For a language $L \subseteq A^*$ and $u, v \in A^*$, we define

$$u^{-1}Lv^{-1} = \{ w \in A^* \mid uwv \in L \}, \quad C_L = \{ u^{-1}Lv^{-1} \mid u, v \in A^* \}.$$

We define $C_L = (C_L, A, \cdot, \circ, L, T)$, where

•
$$q \cdot a = a^{-1}q$$
,
• $q \circ a = qa^{-1}$,
• $u^{-1}Lv^{-1} \in T$ iff $\lambda \in u^{-1}Lv^{-1}$ (iff $uv \in L$).

> < 国 > < 国 >

Introduction	Definition of Biautomata
Biautomata	Basic Properties
Ir New Results	Canonical Biautomaton

Canonical Biautomaton

For a language $L \subseteq A^*$ and $u, v \in A^*$, we define

$$u^{-1}Lv^{-1} = \{ w \in A^* \mid uwv \in L \}, \quad C_L = \{ u^{-1}Lv^{-1} \mid u, v \in A^* \}.$$

We define $C_L = (C_L, A, \cdot, \circ, L, T)$, where

•
$$q \cdot a = a^{-1}q$$
,
• $q \circ a = qa^{-1}$,
• $u^{-1}Lv^{-1} \in T$ iff $\lambda \in u^{-1}Lv^{-1}$ (iff $uv \in L$).

Lemma

For each regular language L over A, the structure C_L is a biautomaton, which recognizes the language L and it is minimal.

3 × < 3 ×

Introduction	Definition of Biautomata
Biautomata	Basic Properties
Our New Results	Canonical Biautomaton

æ

Introduction	Definition of Biautomata
Biautomata	Basic Properties
Our New Results	Canonical Biautomaton

▶ ★ 臣 ▶

.

æ.

Introduction	Definition of Biautomata
Biautomata	Basic Properties
Our New Results	Canonical Biautomaton

The (bi)automaton recognizes $L = L_{aba} = A^* a A^* b A^* a A^*$.

Introduction	Definition of Biautomata
Biautomata	Basic Properties
Our New Results	Canonical Biautomaton

 $L = L_{aba} = A^* a A^* b A^* a A^*, \ a^{-1}L = A^* b A^* a A^* = L_{ba},$ $La^{-1} = A^* a A^* b A^* = L_{ab}, \ a^{-1}L_{ab} = L_b, ...$

Introduction	Definition of Biautomata
Biautomata	Basic Properties
Our New Results	Canonical Biautomaton

III. Our New Results

Ondřej Klíma and Libor Polák Biautomata for *k*-Piecewise Testable Languages

◆ロ▶★@▶★注▶★注▶ 注 のQ@

Proof of the Main Result Remarks and Examples Future Research

Proof of the Main Result

Recall the formulation of the main result:

Theorem

Let L be a piecewise testable language with an (acyclic) canonical biautomaton of depth k. Then L is k-piecewise testable.

< 回 > < 回 > < 回 >

Proof of the Main Result Remarks and Examples Future Research

Proof of the Main Result

Recall the formulation of the main result:

Theorem

Let L be a piecewise testable language with an (acyclic) canonical biautomaton of depth k. Then L is k-piecewise testable.

First we need a characterization of *k*-piecewise testable languages:

For $u, v \in A^*$, the meaning $u \sim_k v$ is that u and v have the same subwords of lengths $\leq k$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Proof of the Main Result Remarks and Examples Future Research

Proof of the Main Result

Recall the formulation of the main result:

Theorem

Let L be a piecewise testable language with an (acyclic) canonical biautomaton of depth k. Then L is k-piecewise testable.

First we need a characterization of *k*-piecewise testable languages:

For $u, v \in A^*$, the meaning $u \sim_k v$ is that u and v have the same subwords of lengths $\leq k$.

Lemma

A language L is k-piecewise testable if and only if L is a union of classes of the partition A^*/\sim_k .

ヘロト ヘポト ヘヨト ヘヨト

Proof of the Main Result Remarks and Examples Future Research

Proof of the Main Result

The main result is a consequence on the following:

Proposition

Let $\mathcal{B} = (Q, A, \cdot, \circ, i, T)$ be an acyclic biautomaton with all states reachable and with depth $\mathcal{B} = \ell$. Then, for every $u, v \in A^*$ such that $u \sim_{\ell} v$, we have

 $u \in L_{\mathcal{B}}$ if and only if $v \in L_{\mathcal{B}}$.

- The proof runs by induction with respect to ℓ .
- It is quite technically involved.
- A sketch could be find in Proceedings of DLT and a full version is placed in the first author's home page.

< ロ > < 同 > < 回 > < 回 > < □ > <

Introduction	Proof of the Main Result
Biautomata	Remarks and Examples
Our New Results	Future Research

The biautomaton is acyclic of depth 3. It recognizes the 3-piecewise language $L = L_{aba}$ which is not 2-piecewise testable.

Introduction	Proof of the Main Result
Biautomata	Remarks and Examples
Our New Results	Future Research

This biautomaton is acyclic of depth 3. It recognizes the 2-piecewise language $L = L_{ab} \cap L_{ba} = L_{aba} \cup L_{bab}$.

Introduction	Proof of the Main Resu
Biautomata	Remarks and Example
our New Results	Future Research

Comparing with the Previous Results

When comparing our result with the previous ones we can state the following

Proposition

Let L be a piecewise testable language and let M(L) be its $(\mathcal{J}$ -trivial) syntactic monoid where ℓ and r are the maximal lengths of chains for the orderings $\leq_{\mathcal{L}}$ and $\leq_{\mathcal{R}}$. Let \mathcal{C}_L be (acyclic) canonical biautomaton of L. Then

depth $C_L \leq \ell + r - 2$.

伺 ト イヨ ト イヨト

Introduction	Proof of the Main Res
Biautomata	Remarks and Example
our New Results	Future Research

Comparing with the Previous Results

When comparing our result with the previous ones we can state the following

Proposition

Let L be a piecewise testable language and let M(L) be its $(\mathcal{J}$ -trivial) syntactic monoid where ℓ and r are the maximal lengths of chains for the orderings $\leq_{\mathcal{L}}$ and $\leq_{\mathcal{R}}$. Let \mathcal{C}_L be (acyclic) canonical biautomaton of L. Then

depth
$$\mathcal{C}_L \leq \ell + r - 2$$
 .

Proposition

For each *n*, there is a 3-piecewise language *L* such that depth $C_L = 4$ and the maximal length of a chain for the ordering $\leq_{\mathcal{R}}$ is r = n.

Our New Results	Future Research
Biautomata	Remarks and Examples
Introduction	Proof of the Main Result

• Questions concerning *k*-piecewise testable languages:

э

Our New Results	Future Research
Biautomata	Remarks and Examples
Introduction	Proof of the Main Result

- Questions concerning *k*-piecewise testable languages:
 - More precise estimate on *k*. (E.g. using other characterisitics of the canonical biautomaton.)

(*) * (*) *)

Future Research
Remarks and Examples
Proof of the Main Resul

- Questions concerning *k*-piecewise testable languages:
 - More precise estimate on *k*. (E.g. using other characterisitics of the canonical biautomaton.)
 - A direct construction of a regular expression for a given biautomaton.

• • • • • • • •

Our New Results	Future Research
Biautomata	Remarks and Example
Introduction	Proof of the Main Resu

- Questions concerning *k*-piecewise testable languages:
 - More precise estimate on *k*. (E.g. using other characterisitics of the canonical biautomaton.)
 - A direct construction of a regular expression for a given biautomaton.
- Other application of biautomata: Characterization of significant classes of regular languages.
 - For example, in NCMA'11 (extended version) we showed: A language *L* is prefix-suffix testable (i.e. a Boolean combination of *uA**, *A***v*, *u*, *v* ∈ *A**) if and only if the canonical biautomaton for the language *L* satisfies

(for each $q \in Q$, $u, v \in A^+$) $q \cdot u = q \circ v = q$ implies that q is absorbing.

Our New Results	Future Research
Biautomata	Remarks and Example
Introduction	Proof of the Main Resu

- Questions concerning *k*-piecewise testable languages:
 - More precise estimate on *k*. (E.g. using other characterisitics of the canonical biautomaton.)
 - A direct construction of a regular expression for a given biautomaton.
- Other application of biautomata: Characterization of significant classes of regular languages.
 - For example, in NCMA'11 (extended version) we showed: A language *L* is prefix-suffix testable (i.e. a Boolean combination of uA^* , A^*v , $u, v \in A^*$) if and only if the canonical biautomaton for the language *L* satisfies

(for each $q \in \mathsf{Q}, \, u, v \in \mathsf{A}^+$) $q \cdot u = q \circ v = q$

implies that q is absorbing.

 We have other characterizations, e.g. level 1/2 (for L ≠ Ø: acyclic, a single final state and it is absorbing).

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Our New Results	Future Research
Biautomata	Remarks and Example
Introduction	Proof of the Main Resu

- Questions concerning *k*-piecewise testable languages:
 - More precise estimate on *k*. (E.g. using other characterisitics of the canonical biautomaton.)
 - A direct construction of a regular expression for a given biautomaton.
- Other application of biautomata: Characterization of significant classes of regular languages.
 - For example, in NCMA'11 (extended version) we showed: A language *L* is prefix-suffix testable (i.e. a Boolean combination of uA^* , A^*v , $u, v \in A^*$) if and only if the canonical biautomaton for the language *L* satisfies

(for each $q \in \mathsf{Q}, \, u, v \in \mathsf{A}^+$) $q \cdot u = q \circ v = q$

implies that q is absorbing.

- We have other characterizations, e.g. level 1/2 (for L ≠ Ø: acyclic, a single final state and it is absorbing).
- 3/2 ???

Introduction	Proof of the Main Result
Biautomata	Remarks and Examples
Our New Results	Future Research

THANK YOU

Ondřej Klíma and Libor Polák Biautomata for *k*-Piecewise Testable Languages

◆ロ▶★@▶★注▶★注▶ 注 のQ@