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How do we present an algebraic structure?
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Multiplication Table

Example from groups:

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

⇒

e is the identity
a2 = b2 = c2 = e
x · y = y · x
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Multiplication Table

Example from groups: Klein 4-Group

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

⇒

e is the identity
a2 = b2 = c2 = e
x · y = y · x
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Presentations:

A presentation for an algebraic structure is ”contracted”
information about the structure allowing for a complete recovery of
its original multiplication table.

For example,
V4 = 〈e, a, b, c |e2 = e, ea = a, . . . , cb = a, c2 = e〉
Since e is the identity ⇒

V4 = 〈a, b, c |a2 = b2 = c2 = e, ab = c , ac = b, ba = c,
bc = a, ca = b, cb = a〉

In addition, c = ab ⇒
V4 = 〈a, b|a2 = b2 = e, ab = ba〉

Every other multiplication in V4 follows from this presentation and
the fact that V4 is a group.

V4 = Gp〈a, b|a2 = b2 = e, ab = ba〉
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Presentations:

Formally, a presentation is a pair
A = 〈X |R〉

with the relations R being equations between expressions formed of
the generators from X .

A = Gp〈X |R〉
A = Inv〈X |R〉
A = InvM〈X |R〉
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Presentations

We say S = Inv〈X |R〉 (or S is presented by 〈X |R〉) if

S = (X ∪ X−1)+/τ

where τ is the smallest congruence containing the relation R and
Vagner’s relations:

{(uu−1u, u)|u ∈ S} ∪ {(uu−1vv−1, vv−1uu−1)|u, v ∈ S}.
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Properties of Presentations:

I presentations represent ”contracted information” about the
structure

I presentations define the algebraic structure uniquely

I a given algebraic structure can have more than one
presentation
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Turning the situation around:

Starting from a presentation, we would like to be able to answer at
least some of the following questions:

I how many elements has this structure?

I is it trivial?

I what are its substructures?

I how is a presentation for a substructure related to the original
presentation?

I given a product of generators, is this product equal to some
other product of generators? ”word problem”

I given two presentations, do they define the same structure?
”isomorphism problem”
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Decision problems

A decision problem for a class of algebraic structures is a fixed
specific question that can be asked for each member of the class
and the answer for which is always either yes or no.

A decision problem for a class of algebraic structures is decidable if
there exists an effective procedure/algorithm/computer program
that will for each specific instance of the question (i.e., for each
specific structure from the class) terminate and give the correct
answer.

A decision problem is said to be undecidable, if no such algorithm
exists.
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Decision problems

All of the decision problems mentioned for the presentations are
undecidable for the classes of groups and inverse semigroups.
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Inverse semigroups

While groups can be represented as symmetries:

Theorem (Cayley)

Every group can be embedded in the set of one to one
transformations on a set.

Inverse semigroups can be represented as partial symmetries:

Theorem (Vagner-Preston)

Every inverse semigroup can be embedded in the set of partial one
to one transformations on a set.
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Inverse Semigroup

Group -

I associative binary operation

I identity

I inverses: a · a−1 = a−1 · a = e

Semigroup - associative operation

Inverse Semigroup

I associative binary operation

I generalized inverses:

a · a−1 · a = a

a−1 · a · a−1 = a−1
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Inverse Semigroup

Group -

I associative binary operation permutations, symmetries,

I identity bijections,...

I inverses: a · a−1 = a−1 · a = e

Semigroup - associative operation concatenation of strings

Inverse Semigroup

I associative binary operation strings, paths in graphs,

I existence of inverses: transition semigroups,

a · a−1 · a = a partial transformations,

a−1 · a · a−1 = a−1 do/undo proceses
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Presentations of Inverse Semigroups

We say S = Inv〈X |R〉 (or S is presented by 〈X |R〉) if

S = (X ∪ X−1)+/τ

where τ is the smallest congruence generated by the relation R
and Vagner’s relations:

{(uu−1u, u)|u ∈ S} ∪ {(uu−1vv−1, vv−1uu−1)|u, v ∈ S}.
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Given an inverse semigroup S = Inv〈X |R〉, we will present results
on both of the two basic types of questions related to
presentations:

I Structural questions

I Decision problems
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Structural Questions

One of the most basic structural question concerning inverse
semigroups is the classification of the maximal subgroups of a
given semigroup S .

A maximal subgroup of an inverse semigroup (S , ·) is a subset G of
S “centered around” an idempotent e of S and satisfying the
property that (G , ·) is in fact a group with e serving as its identity
element.
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Maximal Subgroups:

An element a is called an idempotent if it satisfies the property
a2 = a.

For example,
if S is a group, it has only one idempotent - the identity.

In general, inverse semigroups can have many idempotents.
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Maximal Subgroups:
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Maximal Subgroups:
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Algorithmic problems in semigroups

I One of the most studied: the word problem for finitely
presented (inverse) semigroups.

I It is a particular case of a more general problem in the
framework of rewriting systems.

Definition (Word problem)

Let S = Inv〈X |R〉 and let w ,w ′ ∈ (X ∪ X−1)+ be two words. Is
there an algorithm (eq. is it decidable) w ,w ′ represent the same
element in S , (i.e. wτ = w ′τ)?

Definition (Rewriting system)

〈X |R〉 where X is a finite alphabet, R ⊆ X ∗ × X ∗ which is
symmetric. We say w1 → w2 if w1 = uxv ,w2 = uyv and
(x , y) ∈ R, the transitive closure of such relation is denoted by

∗−→,
thus the word problem is reduced to ask whether or not, given
w ,w ′ ∈ X ∗, w

∗−→ w ′
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Example: the free case in Groups

Consider the free group FG (a, b) = Gp〈a, b|∅〉,

w = aba−1ab−1a w ′ = aa

Is w = w ′ in FG (a, b)?

Seen as a rewriting system:

aba−1ab−1a→ abb−1a→ aa

so it is always decidable since relations R reduce the length and we
have always a normal form...
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Example for a Free Inverse Semigroup

Consider the free inverse semigroup FIS(a, b) = Inv〈a, b|∅〉

w = aa−1bb−1ab w ′ = bb−1ab

Is w = w ′ in FIS(a, b)?
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Example for a Free Inverse Semigroup

Let S = FIS(a, b) = Inv〈a, b | ∅〉 and w = aa−1b2b−1a2a−1.

Mann Tree MT(w):

s
6

-a s
s
6

s
6

b

b

- s - sa a- s
a

a- s
?
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Free Inverse Semigroup

Theorem (Munn,’74 )

u = v in FIM(X )
iff

MT (u) = MT (v) and the roots are the same.
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Free Inverse Semigroup

Theorem (Munn,’74 )

u = v in FIM(X )
iff

MT (u) = MT (v) and the roots are the same.

We build the Munn automata for w and w ′.
If they recognize the same language, then wτ = w ′τ .
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Example for a Free Inverse Semigroup

Consider the free inverse semigroup FIS(a, b) = Inv〈a, b|∅〉
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Tatiana Jajcayova FMFI UK Word Graphs



Inverse Word Graph

Let X 6= ∅ be a set (an alphabet).
An inverse word graph over X is a connected graph whose edges
are labeled by the elements from X , and that satisfies the property
that for each edge z the oppositely oriented edge z is labeled by
the inverse of the label of z .
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Schützenberger graph

Let S = Inv〈X |R〉

Definition (Schützenberger graph)

Let w be a word in (X ∪ X−1)+. The Schützenberger graph of w
relative to the presentation Inv〈X |R〉 is the graph SΓ(X ,R,wτ)
whose vertices are the elements of the R-class Rwτ of wτ in S ,
and whose edges are of the form

{(v1, x , v2) | v1, v2 ∈ Rwτ and v1(x τ) = v2}.

s
v1

s
v2

-xτ

if v2 = v1 · xτ .
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Schützenberger automata

The Schützenberger automaton

A(Y ,T ,w) = (ww−1τ,SΓ(Y ,T ,w),wτ)
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Schützenberger automata

I Schützenberger automata – tool to approach algorithmic and
structural problems in inverse semigroups;

generalization of
Munn automata.

I H = Inv〈Y |T 〉 = (Y ∪ Y−1)+/τ the Schützenberger graphs
SΓ(Y ,T ,w) for w ∈ (Y ∪ Y−1)+ are the connected
components of the Cayley graph of H containing wτ .

I SΓ(Y ,T ,w) is a deterministic inverse word graph
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Schützenberger automata - Stephen’s theorem

Schützenberger automaton A(Y ,T ,w) has many nice properties...
[Stephen, 1990]

I one especially useful for the study of the word problem:

wτ = w ′τ

iff

L[A(Y ,T ,w)] = L[A(Y ,T ,w ′)]

.

I one especially useful for the study of structure:

Ge
∼= Aut(SΓ(X ,R, e))
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General Inverse Semigroups

Applying Stephen’s theorem assumes that we already know the
Schützenberger graph for the given word and inverse semigroup.

In general, we do not know any effective procedure for constructing
the Schützenberger graphs.
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Stephen’s iterative procedure.

Elementary expansion:
- sewing on a relation r = s
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Schützenberger automata

In this way we get a directed system of inverse automata

A1 → A2 → . . .→ Ai → . . .

whose directed limit is the Schützenberger automata A(Y ,T ,w).
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Products

Combining “simple” objects into larger, more complicated, objects
is one of the most fruitful approaches in mathematics.

For example, if we define the property of being simple to be the
property of having a solvable word problem, one needs to address
the question of which product operations preserve the property of
being simple.

There are many product operations used successfully for both
groups and semigroups – direct product, free product,
amalgamated product.

Our focus will be on the product operation originally introduced for
groups and called an HNN-extension.

Tatiana Jajcayova FMFI UK Word Graphs



Products

Combining “simple” objects into larger, more complicated, objects
is one of the most fruitful approaches in mathematics.

For example, if we define the property of being simple to be the
property of having a solvable word problem, one needs to address
the question of which product operations preserve the property of
being simple.

There are many product operations used successfully for both
groups and semigroups – direct product, free product,
amalgamated product.

Our focus will be on the product operation originally introduced for
groups and called an HNN-extension.

Tatiana Jajcayova FMFI UK Word Graphs



Products

Combining “simple” objects into larger, more complicated, objects
is one of the most fruitful approaches in mathematics.

For example, if we define the property of being simple to be the
property of having a solvable word problem, one needs to address
the question of which product operations preserve the property of
being simple.

There are many product operations used successfully for both
groups and semigroups – direct product, free product,
amalgamated product.

Our focus will be on the product operation originally introduced for
groups and called an HNN-extension.

Tatiana Jajcayova FMFI UK Word Graphs



Products

Combining “simple” objects into larger, more complicated, objects
is one of the most fruitful approaches in mathematics.

For example, if we define the property of being simple to be the
property of having a solvable word problem, one needs to address
the question of which product operations preserve the property of
being simple.

There are many product operations used successfully for both
groups and semigroups – direct product, free product,
amalgamated product.

Our focus will be on the product operation originally introduced for
groups and called an HNN-extension.

Tatiana Jajcayova FMFI UK Word Graphs



HNN-extensions for groups

HigmanNeumannNeumann - extensions

t−1at = aφ for ∀a ∈ A
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Handle

For example, the fundamental group of a surface with a handle is
an HNN-extension of the fundamental group of the surface without
the handle attached.
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Definition of HNN-extensions for inverse semigroups

Definition (A.Yamamura)

Let S = Inv〈X | R〉 be an inverse semigroup.
Let A,B be inverse subsemigroups of S ,
ϕ : A −→ B be an isomorphism

Then

S∗ = Inv〈S , t | t−1at = aϕ,

t−1t = f , tt−1 = e,∀a ∈ A〉

is called the HNN-extension of S associated with ϕ.

e ∈ A ⊆ eSe and f ∈ B ⊆ fSf (or e /∈ A ⊆ eSe and f /∈ B ⊆ fSf
for some e, f ∈ E (S)).

:-)
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HNN-extensions for inverse semigroups

In what follows, we shall address the structural and decision
questions concerning the HNN-extensions of inverse semigroups,
S∗ = Inv〈X , t | R ∪ RHNN〉, via the use of the very visual and
intuitive concept of a graph “constructed from a word in X
according to the rules in R ∪ RHNN”.
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HNN-extensions for inverse semigroups

In the special case when S = Inv〈X , t|R ∪ RHNN〉, a part of the
word graph over X ∪ {t} may look something like this:
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HNN-extensions for inverse semigroups

⇓
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The tree structure of lobe graphs

Theorem (T.J.)

The lobe graph T (Γ) of a Schützenberger graph Γ relative to the
presentation Inv〈X , t |R ∪ RHNN〉 is an oriented tree.
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The tree structure of lobe graphs
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Characterization of the Schützenberger automata for
HNN-extension.

Theorem (T.J.)

Let S∗ be a lower bounded HNN-extension. The Schützenberger
automata of S∗ relative to the presentation Inv〈X ∪{t}|R ∪RHNN〉
are precisely the complete T -automata that possess a host.

I Schützenberger graphs of HNN-extensions have tree like lobe
structure and many other ”nice” features – e.g., they contain
a special subgraph with only finitely many lobes that contains
the information for the whole graph.

I the tree like lobe structure of these graphs allows for the use
of the Bass-Serre Theory of group actions on trees and graphs
of groups.
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Word Problem for HNN-extension.

Theorem (T.J.)

The word problem is decidable for any HNN-extension of the form
S∗ = [S ;A,B;ϕ] , where A and B are isomorphic finitely generated
inverse subsemigroups of FIS(X ).
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Amalgams of Inverse Semigroups

Amalgam is a 5-uple [S1, S2;U, ω1, ω2] where S1,S2,U are inverse
semigroups and ωi : U ↪→ Si , i = 1, 2.
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Amalgams of Inverse Semigroups

If S1 = Inv〈X1|R1〉, S2 = Inv〈X2|R2〉 with X1 ∩ X2 = ∅

S1 ∗U S2 = Inv〈X |R1,R2,Rw 〉 = Inv〈X |R〉

where X = X1 ∪ X2, Rw = {(ω1(u), ω2(u)) : u ∈ U}
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Word problem for amalgams of (inverse)-semigroups

The word problem for amalgams of (inverse)-semigroups Given two
(inverse)-semigroups S1,S2 which have decidable word problem
and the embeddings ωi : U ↪→ Si are computable, does S1 ∗U S2
have decidable word problem?

I Proof based on an ordered way to build Schützenberger
automata

I Result in contrast with Sapir’s results using Minsky machines.
I Group case is decidable.
I What about inverse semigroups?
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(inverse)-semigroups S1,S2 which have decidable word problem
and the embeddings ωi : U ↪→ Si are computable, does S1 ∗U S2
have decidable word problem?

I Proof based on an ordered way to build Schützenberger
automata

I Result in contrast with Sapir’s results using Minsky machines.
I Group case is decidable.
I What about inverse semigroups?

Theorem (Cherubini, Meakin, Piochi)

The word problem in S1 ∗U S2 where S1,S2 are finite inverse semigroups is
decidable.
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Word problem for amalgams of (inverse)-semigroups

The word problem for amalgams of (inverse)-semigroups Given two
(inverse)-semigroups S1,S2 which have decidable word problem
and the embeddings ωi : U ↪→ Si are computable, does S1 ∗U S2
have decidable word problem?

I Proof based on an ordered way to build Schützenberger
automata

I Result in contrast with Sapir’s results using Minsky machines.

I Group case is decidable.
I What about inverse semigroups?

Theorem (Sapir)

There are two finite semigroups for which the word problem in S1 ∗U S2 is
undecidable.
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Word problem for amalgams of (inverse)-semigroups

The word problem for amalgams of (inverse)-semigroups Given two
(inverse)-semigroups S1,S2 which have decidable word problem
and the embeddings ωi : U ↪→ Si are computable, does S1 ∗U S2
have decidable word problem?

I Proof based on an ordered way to build Schützenberger
automata

I Result in contrast with Sapir’s results using Minsky machines.
I Group case is decidable.

I What about inverse semigroups?

Theorem
If S1, S2 are two groups which have decidable word problem and the
embeddings ωi : U ↪→ Si are computable, then S1 ∗U S2 have decidable
word problem.
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Word problem for amalgams of (inverse)-semigroups

The word problem for amalgams of (inverse)-semigroups Given two
(inverse)-semigroups S1,S2 which have decidable word problem
and the embeddings ωi : U ↪→ Si are computable, does S1 ∗U S2
have decidable word problem?

I Proof based on an ordered way to build Schützenberger
automata

I Result in contrast with Sapir’s results using Minsky machines.
I Group case is decidable.
I What about inverse semigroups?

Theorem (Rodaro, Silva)

The word problem for S1 ∗U S2 of inverse semigroups may be undecidable
even if we assume S1 and S2 to have finite R-classes and ω1, ω2 to be
computable functions.
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Idea of the proof

I use Schützenberger automata to simulate the behavior of a
two counter machine building a correspondence

iterative construction←→ computations of the machine

I given a two-counter machine, S1 simulates the first tape, S2
simulates the second and U simulates the control unit.
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Idea of the proof

Starting from linear automaton of the word ⊥1 a1qa
n
2 ⊥2 representing the

configuration (Q, 1, n).
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Idea of the proof

Since the machine is reversible there is a unique computation
(Q, 1, n) `M (Q′, 0, n) due to the instruction (for instance) (Q, 1,−,Q′).
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Idea of the proof

This corresponds to the relations

sa1q1 = st1q
′
1t
−1
1 , sa2q2 = st2q

′
2t
−1
2

...so we apply an expansion
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Idea of the proof

followed by folding...

Tatiana Jajcayova FMFI UK Word Graphs



Idea of the proof

The extra relation in S1,S2 ensure the cloning of the configuration to the
next step.
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Idea of the proof

Continuing in this way we obtain a structure of this form...
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Idea of the proof

If we reach the STOP instruction, some extra relations ensure that the
final state is a zero...
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Děkuji!
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