Compression of Sheet Music

Jan Baier

Department of Theoretical Computer Science Faculty of Information Technology Czech Technical University in Prague

Česko-Slovenská MELA 2012 28. 9. 2012

Outline

- Music
- The ExCom Library
- 2 Compression Methods
 - Types od Compression Methods
 - Methods for Integer Compression

3 Input Data

Musical Compositions

4 Conclusions

- The Optimal Method
- Dictionary and Statistical Methods

"Music is primarily something to which one listens, so it is one of many forms of art, art of audition. Music is also a universal language and language of the emotions." [1]

Music

We can only describe a subset of all attributes:

- pitch,
- duration,
- loudness,
- articulation.

The ExCom Library

Main features of the Extensible Compression library¹:

- C++ language,
- GNU LGPL version 3 license,
- common interface,
- unified access to data,
- pipelining,
- extensibility.

¹http://www.stringology.org/projects/ExCom/ J. Baier, FIT CTU Compression of Sheet Music

Types of Compression Methods

- Statistical methods (arithmetic coding, Huffman)
- Dictionary methods (LZ family LZ77, LZ78, LZSS, LZW)
- Context methods (PPM, ACB)
- Block size integer coding
- Variable length integer coding

Methods for Integer Compression

Elias codes

- α code
- β , β' code
- γ , γ' code
- δ , δ' code
- ω , ω' code
- Golomb and Rice codes
- Fibonacci codes
- Other codes
 - Unary code
 - Block code
 - Ternary comma code

Musical Compositions

Plenty of different software means plenty of formats:

- 1 MIDI,
- MusiXTeX,
- 3 Lilypond,
- 4 CSound,
- 5 MuseScore,
- 6 MusicXML.

Some are standardized.

CSound score file

;;	Inst	Time	Dur	Pitch	Vely
	i0	0	1	8.00	100
	i0	1	1	8.02	100
	i0	2	1	8.04	100

Figure: A CSound score file fragment

The Optimal Method

	Length of code word for an integer			
	10	1 000	n	
ternary code	8	16	$2(\lfloor \log_3(n-1) \rfloor + 2)$	
α -code	10	1 000	n	
β -code	4	10	$\lfloor \log_2(n) \rfloor + 1$	
γ -code	7	19	$2\lfloor \log_2(n) \rfloor + 1$	
δ -code	8	16	$\lfloor \log_2(n) \rfloor + 2\lfloor \log_2(\log_2(n) + 1) \rfloor + 1$	
ω -code	7	16	$\leq \frac{5}{2} \lfloor \log_2(n) \rfloor + 1$	
Fibonacci c.	6	16	$1 \leq \lfloor \log_{\phi}\left(\sqrt{5}n ight) floor+1$, $\phi = rac{1+\sqrt{5}}{2}$	

Table: Comparison of lengths of code words for some methods

-------PSC

Comparison of Used Codes

promenade.csd

Speed

J. Baier, FIT CTU

Compression of Sheet Music

Comparison of Used Codes

rank	method	score
1.	Delta code	1.00
2.	Rice code	1.06
3.	Delta prime code	1.15
4.	Gamma code	1.17
5.	Gamma prime code	1.20
6.	6. Omega prime code	
7.	7. Omega code	
8.	Fibonacci code	2.53

Table: Methods according to the encoding and decoding speed

These methods should be used if

- the entropy of the input is low,
- the variance of the symbols is low.

The disadvantages of these methods are

- lower encoding speed,
- a lack of streaming encoding capabilities,
- high dependency on the entropy.

Method acb Method dhuff Method Iz77 Method Iz78

10 0 Delta code

Compression of Sheet Music

Method Izw Method ppm Method sfano Method shuff

Method Izss

These methods should be used if

- the entropy of the input is low,
- the variance of the symbols is low.

The disadvantages of these methods are

- lower encoding speed,
- a lack of streaming encoding capabilities,
- high dependency on the entropy.

etuda.csd

J. Baier, FIT CTU

Compression of Sheet Music

- Variable length integer coding can be used.
- There is no optimal method but we can have a heuristic.
- Is it genre-dependent?
- Can we find a pattern?

Reference

Alperson, P.: *What is music?: an introduction to the philosophy of music.* Pennsylvania State University Press, 1987, ISBN 9780271013183.

