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Ondřej Klíma and Libor Polák Biautomata for k -Piecewise Testable Languages



Introduction
Biautomata

Our New Results

Topic of the Talk

Biautomata – a new notion (Klíma, Polák – NCMA’11).
Piecewise testable languages

are studied in the algebraic theory of regular languages,
were characterized by Simon (via syntactic monoids),

Ondřej Klíma and Libor Polák Biautomata for k -Piecewise Testable Languages



Introduction
Biautomata

Our New Results

Topic of the Talk

Biautomata – a new notion (Klíma, Polák – NCMA’11).
Piecewise testable languages

are studied in the algebraic theory of regular languages,
were characterized by Simon (via syntactic monoids),
form level 1 in the Straubing-Thérien hierarchy of star-free
languages.
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Biautomata – a new notion (Klíma, Polák – NCMA’11).
Piecewise testable languages

are studied in the algebraic theory of regular languages,
were characterized by Simon (via syntactic monoids),
form level 1 in the Straubing-Thérien hierarchy of star-free
languages.

Note: An effective characterization of level 2 is an open
problem for 40 years.
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Piecewise Testable Languages

Definition

A language L over an alphabet A is called piecewise testable if
it is a Boolean combination of languages of the form

A∗a1A∗a2A∗ . . .A∗aℓA
∗, where a1, . . . ,aℓ ∈ A, ℓ ≥ 0 . (∗)
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Piecewise Testable Languages

Definition

A language L over an alphabet A is called piecewise testable if
it is a Boolean combination of languages of the form

A∗a1A∗a2A∗ . . .A∗aℓA
∗, where a1, . . . ,aℓ ∈ A, ℓ ≥ 0 . (∗)

Theorem (Simon ’72)

A regular language L is piecewise testable if and only if the
syntactic monoid M(L) of L is J -trivial.
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Piecewise Testable Languages

Definition

A language L over an alphabet A is called piecewise testable if
it is a Boolean combination of languages of the form

A∗a1A∗a2A∗ . . .A∗aℓA
∗, where a1, . . . ,aℓ ∈ A, ℓ ≥ 0 . (∗)

Theorem (Simon ’72)

A regular language L is piecewise testable if and only if the
syntactic monoid M(L) of L is J -trivial.

Definition

A language L is called k-piecewise testable if L can be written
as a Boolean combination of languages of the form (∗) with
ℓ ≤ k .
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k -piecewise Testable Languages

Question (for each k) : The k-piecewise testability.
Solution: The least k such that a given piecewise testable
language L is k-piecewise testable can be found by
brute-force algorithms.
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Solution: The least k such that a given piecewise testable
language L is k-piecewise testable can be found by
brute-force algorithms.

For each fixed k and a fixed alphabet A, there are only
finitely many k -piecewise testable languages over A.
A bit sophisticated algorithm: via Eilenberg’s
correspondence (using relatively free monoids).
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k -piecewise Testable Languages

Question (for each k) : The k-piecewise testability.
Solution: The least k such that a given piecewise testable
language L is k-piecewise testable can be found by
brute-force algorithms.

For each fixed k and a fixed alphabet A, there are only
finitely many k -piecewise testable languages over A.
A bit sophisticated algorithm: via Eilenberg’s
correspondence (using relatively free monoids).

Both methods are unrealistic in practice.
Also using identies does not help (no finite bases in
general).
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Our ambition, in this contribution, is not to decide the
k-piecewise testability in a reasonable computational time.
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Our ambition, in this contribution, is not to decide the
k-piecewise testability in a reasonable computational time.

Instead of that, for a given piecewise testable language L, we
would like to find a good estimate, i.e. a (possibly small)
number k , such that L is k-piecewise testable.
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would like to find a good estimate, i.e. a (possibly small)
number k , such that L is k-piecewise testable.

Simon: k = 2n − 1 where n is the maximal length of a
J -chain in the syntactic monoid of L.
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k-piecewise testability in a reasonable computational time.

Instead of that, for a given piecewise testable language L, we
would like to find a good estimate, i.e. a (possibly small)
number k , such that L is k-piecewise testable.

Simon: k = 2n − 1 where n is the maximal length of a
J -chain in the syntactic monoid of L.

OK: k = ℓ+ r − 2 where ℓ and r are the maximal lengths of
chains for the orderings ≤L and ≤R.
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Our ambition, in this contribution, is not to decide the
k-piecewise testability in a reasonable computational time.

Instead of that, for a given piecewise testable language L, we
would like to find a good estimate, i.e. a (possibly small)
number k , such that L is k-piecewise testable.

Simon: k = 2n − 1 where n is the maximal length of a
J -chain in the syntactic monoid of L.

OK: k = ℓ+ r − 2 where ℓ and r are the maximal lengths of
chains for the orderings ≤L and ≤R.

Note: ℓ ≤ n and r ≤ n and hence ℓ+ r − 2 < 2n − 1.
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Basic Goal

Our ambition, in this contribution, is not to decide the
k-piecewise testability in a reasonable computational time.

Instead of that, for a given piecewise testable language L, we
would like to find a good estimate, i.e. a (possibly small)
number k , such that L is k-piecewise testable.

Simon: k = 2n − 1 where n is the maximal length of a
J -chain in the syntactic monoid of L.

OK: k = ℓ+ r − 2 where ℓ and r are the maximal lengths of
chains for the orderings ≤L and ≤R.

Note: ℓ ≤ n and r ≤ n and hence ℓ+ r − 2 < 2n − 1.

We found a different proof (OK+LP: NCMA’11) of Simon’s result
using a notion of biautomaton.
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Biautomaton Characterization

Theorem (OK+LP ’11)

A language L is piecewise testable if and only if its canonical
biautomaton CL of L is acyclic.

Note: Loops are not considered as cycles.
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Biautomaton Characterization

Theorem (OK+LP ’11)

A language L is piecewise testable if and only if its canonical
biautomaton CL of L is acyclic.

Note: Loops are not considered as cycles.

The core of the proof was to show that if CL has m states
then L is 2m-piecewise testable.

Ondřej Klíma and Libor Polák Biautomata for k -Piecewise Testable Languages



Introduction
Biautomata

Our New Results

Piecewise Testable Languages
Basic Goal
Main Result

Biautomaton Characterization

Theorem (OK+LP ’11)

A language L is piecewise testable if and only if its canonical
biautomaton CL of L is acyclic.

Note: Loops are not considered as cycles.

The core of the proof was to show that if CL has m states
then L is 2m-piecewise testable.
Here we improve this result in two directions:

We eliminate the coefficient 2,
We replace the size of CL by the depth of the biautomaton.

A depth of an acyclic biautomaton B is the length of the
longest simple path in B.
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Main Result

The main result of our contribution:

Theorem

Let L be a piecewise testable language with an (acyclic)
canonical biautomaton of depth k. Then L is k-piecewise
testable.
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Informal Description of Biautomata

finite control

input tape

The heads read symbols alternately, not depending on the
current state of the finite control or on the symbol read
from the tape.

The acceptance of a word depends neither on the position,
in which the heads meet, nor on the sequence of states the
finite control goes through.
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Formal Definition of Biautomata

Definition (OK+LP – NCMA 2011)

A biautomaton is a sixtuple B = (Q,A, ·, ◦, i ,T ) where

(1) Q is a non-empty finite set of states,

(2) A is a finite alphabet,

(3) · : Q × A → Q is a left action,

(4) ◦ : Q × A → Q is a right action,

(5) i ∈ Q is the initial state,

(6) T ⊆ Q is the set of terminal states,

(7) (q · a) ◦ b = (q ◦ b) · a for each q ∈ Q and a,b ∈ A,

(8) q · a ∈ T if and only if q ◦ a ∈ T for each q ∈ Q and a ∈ A.
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Formal Definition of Biautomata

Definition (OK+LP – NCMA 2011)

A biautomaton is a sixtuple B = (Q,A, ·, ◦, i ,T ) where

(1) Q is a non-empty finite set of states,

(2) A is a finite alphabet,

(3) · : Q × A → Q is a left action,

(4) ◦ : Q × A → Q is a right action,

(5) i ∈ Q is the initial state,

(6) T ⊆ Q is the set of terminal states,

(7’) (q · u) ◦ v = (q ◦ v) · u for each q ∈ Q and u, v ∈ A∗,

(8’) q · u ∈ T if and only if q ◦ u ∈ T for each q ∈ Q and u ∈ A∗.
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a
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Example 1

b

ba
b

b

a,b

a,b

a,b

a,b

b

ba

a

a

b

b

The diagram represents a biautomaton; it is not acyclic.

Ondřej Klíma and Libor Polák Biautomata for k -Piecewise Testable Languages



Introduction
Biautomata

Our New Results

Definition of Biautomata
Basic Properties
Canonical Biautomaton

Example 2

a

b
a

a

a

b

b
a

a

b

ab b b

ba a a

a,b

a,b

b

b
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The biautomaton is acyclic.
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a
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b

b
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ab b b

ba a a

a,b

a,b

b

b

The biautomaton is acyclic. Its depth is 3.
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Acceptance of an Input Word

The biautomaton B accepts a given word u ∈ A∗ if i · u ∈ T .

B accepts u ∈ A∗ iff i ◦ u ∈ T .
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Acceptance of an Input Word

The biautomaton B accepts a given word u ∈ A∗ if i · u ∈ T .

B accepts u ∈ A∗ iff i ◦ u ∈ T .

But B can read the word u in many other ways:
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Definition of Biautomata
Basic Properties
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Acceptance of an Input Word

The biautomaton B accepts a given word u ∈ A∗ if i · u ∈ T .

B accepts u ∈ A∗ iff i ◦ u ∈ T .

But B can read the word u in many other ways:
We can divide u = u1u2 . . . ukvk . . . v2v1 arbitrarily, where
u1, . . . , v1 ∈ A∗, and we read u1 from left first, then v1 from
right, then u2 from left, and so on.

i q

u1

v1

u2

v2
· · ·

uk

vk
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Acceptance of an Input Word

The biautomaton B accepts a given word u ∈ A∗ if i · u ∈ T .

B accepts u ∈ A∗ iff i ◦ u ∈ T iff q ∈ T .

But B can read the word u in many other ways:
We can divide u = u1u2 . . . ukvk . . . v2v1 arbitrarily, where
u1, . . . , v1 ∈ A∗, and we read u1 from left first, then v1 from
right, then u2 from left, and so on.

i q

u1

v1

u2

v2
· · ·

uk

vk

q = ((. . . ((((i · u1) ◦ v1) · u2) ◦ v2) . . . ) · uk) ◦ vk .
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Basic Properties of Biautomata

The part { i · u | u ∈ A∗ } ⊆ Q together with the left actions
is a DFA, which recognizes the same language.
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Basic Properties of Biautomata

The part { i · u | u ∈ A∗ } ⊆ Q together with the left actions
is a DFA, which recognizes the same language.

From a finite deterministic automaton one can construct a
biautomaton which recognizes the same language.
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Biautomata recognize exactly regular languages.
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Basic Properties of Biautomata

The part { i · u | u ∈ A∗ } ⊆ Q together with the left actions
is a DFA, which recognizes the same language.

From a finite deterministic automaton one can construct a
biautomaton which recognizes the same language.

Biautomata recognize exactly regular languages.

There is a minimal biautomaton recognizing a given
regular language L and it is unique up to isomorphism.

Ondřej Klíma and Libor Polák Biautomata for k -Piecewise Testable Languages



Introduction
Biautomata

Our New Results

Definition of Biautomata
Basic Properties
Canonical Biautomaton

Basic Properties of Biautomata

The part { i · u | u ∈ A∗ } ⊆ Q together with the left actions
is a DFA, which recognizes the same language.

From a finite deterministic automaton one can construct a
biautomaton which recognizes the same language.

Biautomata recognize exactly regular languages.

There is a minimal biautomaton recognizing a given
regular language L and it is unique up to isomorphism.

The so called canonical biautomaton is an analogy of
Brzozowski’s construction of a minimal complete deterministic
automaton. It uses two-sided derivatives:
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Canonical Biautomaton

For a language L ⊆ A∗ and u, v ∈ A∗, we define

u−1Lv−1 = {w ∈ A∗ | uwv ∈ L }, CL = {u−1Lv−1 | u, v ∈ A∗ } .

We define CL = (CL,A, ·, ◦,L,T ), where

q · a = a−1q,

q ◦ a = qa−1,

u−1Lv−1 ∈ T iff λ ∈ u−1Lv−1 (iff uv ∈ L).
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Canonical Biautomaton

For a language L ⊆ A∗ and u, v ∈ A∗, we define

u−1Lv−1 = {w ∈ A∗ | uwv ∈ L }, CL = {u−1Lv−1 | u, v ∈ A∗ } .

We define CL = (CL,A, ·, ◦,L,T ), where

q · a = a−1q,

q ◦ a = qa−1,

u−1Lv−1 ∈ T iff λ ∈ u−1Lv−1 (iff uv ∈ L).

Lemma
For each regular language L over A, the structure CL is a
biautomaton, which recognizes the language L and it is
minimal.
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a

b
a

a b

a,b
b

The (bi)automaton recognizes L = Laba = A∗aA∗bA∗aA∗.
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Example 2

L

Lba La

Lab Lb

A∗

a

b
a

a

a

b

b
a

a

b

ab b b

ba a a

a,b

a,b

b

b

L = Laba = A∗aA∗bA∗aA∗, a−1L = A∗bA∗aA∗ = Lba,
La−1 = A∗aA∗bA∗ = Lab, a−1Lab = Lb, ...
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Proof of the Main Result

Recall the formulation of the main result:

Theorem

Let L be a piecewise testable language with an (acyclic)
canonical biautomaton of depth k. Then L is k-piecewise
testable.
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Proof of the Main Result

Recall the formulation of the main result:

Theorem

Let L be a piecewise testable language with an (acyclic)
canonical biautomaton of depth k. Then L is k-piecewise
testable.

First we need a characterization of k-piecewise testable
languages:
For u, v ∈ A∗, the meaning u∼kv is that u and v have the same
subwords of lengths ≤ k .
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Proof of the Main Result

Recall the formulation of the main result:

Theorem

Let L be a piecewise testable language with an (acyclic)
canonical biautomaton of depth k. Then L is k-piecewise
testable.

First we need a characterization of k-piecewise testable
languages:
For u, v ∈ A∗, the meaning u∼kv is that u and v have the same
subwords of lengths ≤ k .

Lemma

A language L is k-piecewise testable if and only if L is a union
of classes of the partition A∗/∼k .
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Proof of the Main Result

The main result is a consequence on the following:

Proposition

Let B = (Q,A, ·, ◦, i ,T ) be an acyclic biautomaton with all states
reachable and with depth B = ℓ. Then, for every u, v ∈ A∗ such
that u ∼ℓ v, we have

u ∈ LB if and only if v ∈ LB .

The proof runs by induction with respect to ℓ.

It is quite technically involved.

A sketch could be find in Proceedings of DLT and a full
version is placed in the first author’s home page.
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Example 2

L

Lba La

Lab Lb

A∗

a

b
a

a

a

b

b
a

a

b

ab b b

ba a a

a,b

a,b

b

b

The biautomaton is acyclic of depth 3. It recognizes the
3-piecewise language L = Laba which is not 2-piecewise
testable.
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Example 3

L

Lba La

Lab Lb

A∗

b
a

b

b

a

a

a

a

b

b

a

b

ab b b

ba a a

a,b

a,b

This biautomaton is acyclic of depth 3. It recognizes the
2-piecewise language L = Lab ∩ Lba = Laba ∪ Lbab.
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Comparing with the Previous Results

When comparing our result with the previous ones we can state
the following

Proposition

Let L be a piecewise testable language and let M(L) be its
(J -trivial) syntactic monoid where ℓ and r are the maximal
lengths of chains for the orderings ≤L and ≤R. Let CL be
(acyclic) canonical biautomaton of L. Then

depth CL ≤ ℓ+ r − 2 .
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Comparing with the Previous Results

When comparing our result with the previous ones we can state
the following

Proposition

Let L be a piecewise testable language and let M(L) be its
(J -trivial) syntactic monoid where ℓ and r are the maximal
lengths of chains for the orderings ≤L and ≤R. Let CL be
(acyclic) canonical biautomaton of L. Then

depth CL ≤ ℓ+ r − 2 .

Proposition

For each n, there is a 3-piecewise language L such that
depth CL = 4 and the maximal length of a chain for the ordering
≤R is r = n.
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Future Research

Questions concerning k-piecewise testable languages:
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Future Research

Questions concerning k-piecewise testable languages:
More precise estimate on k . (E.g. using other
characterisitics of the canonical biautomaton.)
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Future Research

Questions concerning k-piecewise testable languages:
More precise estimate on k . (E.g. using other
characterisitics of the canonical biautomaton.)
A direct construction of a regular expression for a given
biautomaton.
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Future Research

Questions concerning k-piecewise testable languages:
More precise estimate on k . (E.g. using other
characterisitics of the canonical biautomaton.)
A direct construction of a regular expression for a given
biautomaton.

Other application of biautomata: Characterization of
significant classes of regular languages.

For example, in NCMA’11(extended version) we showed:
A language L is prefix-suffix testable (i.e. a Boolean
combination of uA∗, A∗v , u, v ∈ A∗) if and only if the
canonical biautomaton for the language L satisfies

(for each q ∈ Q, u, v ∈ A+) q · u = q ◦ v = q

implies that q is absorbing .
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Future Research

Questions concerning k-piecewise testable languages:
More precise estimate on k . (E.g. using other
characterisitics of the canonical biautomaton.)
A direct construction of a regular expression for a given
biautomaton.

Other application of biautomata: Characterization of
significant classes of regular languages.

For example, in NCMA’11(extended version) we showed:
A language L is prefix-suffix testable (i.e. a Boolean
combination of uA∗, A∗v , u, v ∈ A∗) if and only if the
canonical biautomaton for the language L satisfies

(for each q ∈ Q, u, v ∈ A+) q · u = q ◦ v = q

implies that q is absorbing .

We have other characterizations, e.g. level 1/2 (for L 6= ∅:
acyclic, a single final state and it is absorbing).
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Future Research

Questions concerning k-piecewise testable languages:
More precise estimate on k . (E.g. using other
characterisitics of the canonical biautomaton.)
A direct construction of a regular expression for a given
biautomaton.

Other application of biautomata: Characterization of
significant classes of regular languages.

For example, in NCMA’11(extended version) we showed:
A language L is prefix-suffix testable (i.e. a Boolean
combination of uA∗, A∗v , u, v ∈ A∗) if and only if the
canonical biautomaton for the language L satisfies

(for each q ∈ Q, u, v ∈ A+) q · u = q ◦ v = q

implies that q is absorbing .

We have other characterizations, e.g. level 1/2 (for L 6= ∅:
acyclic, a single final state and it is absorbing).
3/2 ???
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THANK YOU
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