Combinatorics on words in DNA computing

Š. Starosta

17. & 20. 5.2011

Outline

DNA computing

- Introduction
- DNA molecule
- The first DNA computation
- Operations in DNA computing
- DNA computing revisited
- What to avoid in a test tube
- 2 Combinatorics on Words
 - Setting in CoW
 - Results
 - More results
 - If there is some time left...

Outline

DNA computing

- Introduction
- DNA molecule
- The first DNA computation
- Operations in DNA computing
- DNA computing revisited
- What to avoid in a test tube

2 Combinatorics on Words

- Setting in CoW
- Results
- More results
- If there is some time left...

Introduction

barriers for "traditional" computers

- HUP
- von Neumann bottleneck

DNA/biomolecular computers: 1994 Leonard Adleman

Introduction

barriers for "traditional" computers

- HUP
- 2 von Neumann bottleneck

DNA/biomolecular computers: 1994 Leonard Adleman

deoxyribonucleic acid

1950s: DNA carries genetic information (double helix model)

structure: polymer chains - strands consisting of bases attached to sugar phosphate backbone

4 bases: A, G, T, C

Watson-Crick complementarity: A likes T, C likes G

deoxyribonucleic acid

1950s: DNA carries genetic information (double helix model)

structure: polymer chains - strands consisting of bases attached to sugar phosphate backbone

4 bases: A, G, T, C

Watson-Crick complementarity: A likes T, C likes G

deoxyribonucleic acid

1950s: DNA carries genetic information (double helix model)

structure: polymer chains - strands consisting of bases attached to sugar phosphate backbone

4 bases: A, G, T, C

Watson-Crick complementarity: A likes T, C likes G

deoxyribonucleic acid

1950s: DNA carries genetic information (double helix model)

structure: polymer chains - strands consisting of bases attached to sugar phosphate backbone

4 bases: A, G, T, C

Watson-Crick complementarity: A likes T, C likes G

deoxyribonucleic acid

1950s: DNA carries genetic information (double helix model)

structure: polymer chains - strands consisting of bases attached to sugar phosphate backbone

4 bases: A, G, T, C

Watson-Crick complementarity: A likes T, C likes G

deoxyribonucleic acid

1950s: DNA carries genetic information (double helix model)

structure: polymer chains - strands consisting of bases attached to sugar phosphate backbone

4 bases: A, G, T, C

Watson-Crick complementarity: A likes T, C likes G

DNA computing

Combinatorics on Words

Structure of DNA

Watson-Crick complementarity and WK-palindromes

Combinatorics on Words

Hamiltonian Path Problem

Leonard Adleman in 1994: Hamiltonian Path Problem (NP-complete) on a graph with 7 vertices

Adleman's DNA computation I

CITY	DNA NAME	COMPLEMENT
ATLANTA	ACTTGCAG	TGAACGTC
BOSTON	TCGGACTG	AGCCTGAC
CHICAGO	GGCTATGT	CCGATACA
DETROIT	CCGAGCAA	GGCTCGTT

Adleman's DNA computation I

CITY	DNA NAME	COMPLEMENT
ATLANTA	ACTTGCAG	TGAACGTC
BOSTON	TCGGACTG	AGCCTGAC
CHICAGO	GGCTATGT	CCGATACA
DETROIT	CCGAGCAA	GGCTCGTT
FLIGHT	DNA	FLIGHT NUMBER
ATLANTA - BOS	GTON GCA	GTCGG
ATLANTA - BOS ATLANTA - DET	ROIT GCA	GTCGG GCCGA
ATLANTA - BOS ATLANTA - DET BOSTON - CHIC	ROIT GCA AGO ACT	GTCGG GCCGA GGGCT
ATLANTA - BOS ATLANTA - DET BOSTON - CHIC BOSTON - DETR	GCA ROIT GCA AGO ACT ROIT ACT	GTCGG GCCGA GGCT GCCGA
ATLANTA - BOS ATLANTA - DET BOSTON - CHIC BOSTON - DETF BOSTON - ATLA	GCA ROIT GCA ROIT GCA AGO ACT ROIT ACT NTA ACT	GTCGG GCCGA G <mark>GGCT</mark> GCCGA GACTT

Adleman's DNA computation II

200-node instance would require 10²⁴ Earth masses of DNA

Adleman's DNA computation II

200-node instance would require 10²⁴ Earth masses of DNA

The likely frame

The scale of this ligation reaction far exceeded what was necessary for the graph under consideration. For each edge in the graph, approximately 3×10^{13} copies of the associated oligonucleotides were added to the ligation reaction. Hence it is likely that vast numbers of DNA molecules encoding the Hamiltonian path were created. In theory the creation of a single such molecule would be sufficient. Hence, for this graph, sub-attomol quantities of oligonucleotides would probably have been sufficient. Alternatively, a much larger graph could have been processed with the pmol quantities employed here.

Manipulation with DNA

- synthesis
- denaturing, annealing and ligation
- separation affinity purification
- detect
- gel electrophoresis
- PCR polymerase chain reaction
- cutting (using restriction enzymes)

Very general model of a DNA calculation

- 1. select the language code
- 2. do the computation
- 3. decode

Advantages and drawbacks

Advantages:

- Size: the information density could go up to 1 bit per cube nm
- High parallelism: 10⁹ calculations per ml of DNA per second
- Energy efficiency: 1019 operations per Joule

Drawbacks:

- required mass of DNA
- reagents
- need of manipulation by a human

• • • • •

Advantages and drawbacks

Advantages:

- Size: the information density could go up to 1 bit per cube nm
- High parallelism: 10⁹ calculations per ml of DNA per second
- Energy efficiency: 1019 operations per Joule

Drawbacks:

- required mass of DNA
- reagents
- need of manipulation by a human

• ..

What problems can be solved by a DNA computer

Problems solved that can be found in literature:

- TSP travelling salesman problem
- addition
- SAT satisfiability problem
- DES cracking
- maximal clique problem
- ...

DNA computing

Combinatorics on Words

Intramolecular hybridization - hairpins

GTCAGCGATAGACCA CAGTCGCTATCACCT

DNA computing

Combinatorics on Words

Intermolecular hybridization

Outline

DNA computing

- Introduction
- DNA molecule
- The first DNA computation
- Operations in DNA computing
- DNA computing revisited
- What to avoid in a test tube
- 2 Combinatorics on Words
 - Setting in CoW
 - Results
 - More results
 - If there is some time left...

DNA strands are considered in their 5' \rightarrow 3' orientation as finite words over $\Delta = \{A, G, C, T\}$

involutive antimorphism WK: $A \leftrightarrow T$, $C \leftrightarrow G$

DNA strands are considered in their 5' \to 3' orientation as finite words over $\Delta=\{A,\,G,\,C,\,T\}$

involutive antimorphism WK: $A \leftrightarrow T$, $C \leftrightarrow G$

DNA strands are considered in their 5' \to 3' orientation as finite words over $\Delta=\{A,G,C,T\}$

involutive antimorphism WK: $A \leftrightarrow T$, $C \leftrightarrow G$

DNA strands are considered in their 5' \to 3' orientation as finite words over $\Delta=\{A,G,C,T\}$

involutive antimorphism WK: $A \leftrightarrow T$, $C \leftrightarrow G$

How to choose the initial coding set L?

- simulation
- 2 algorithm
- theory

Bio-operations vs. *L*: after each bio-operation the language changes - do the properties hold?

How to choose the initial coding set L?

- simulation
- algorithm
- theory

Bio-operations vs. L: after each bio-operation the language changes - do the properties hold?

to avoid possible hybridizations, we impose several constraints on \boldsymbol{L}

- *L* is Θ -*k*-*m*-subword code if $\forall u \in \mathcal{A}^k, 1 \leq i \leq m, \mathcal{A}^* u \mathcal{A}^i \Theta(u) \mathcal{A}^* \cap L = \emptyset$
- L is Θ -k-code if $\forall u, v \in \mathcal{A}^k \cap L, u \neq \Theta(v)$
- L is bond-free if ∀u, v ∈ A^k ∩ L, H(u, Θ(v)) > d, where H is the Hamming distance
- frequency of C and G in each word should be $\frac{1}{2}$
- • •

to avoid possible hybridizations, we impose several constraints on L

- L is Θ -k-m-subword code if $\forall u \in \mathcal{A}^k, 1 \leq i \leq m, \mathcal{A}^* u \mathcal{A}^i \Theta(u) \mathcal{A}^* \cap L = \emptyset$
- L is Θ -k-code if $\forall u, v \in \mathcal{A}^k \cap L, u \neq \Theta(v)$
- L is bond-free if ∀u, v ∈ A^k ∩ L, H(u, Θ(v)) > d, where H is the Hamming distance
- frequency of C and G in each word should be $\frac{1}{2}$

• • • •

to avoid possible hybridizations, we impose several constraints on L

- L is Θ -k-m-subword code if $\forall u \in \mathcal{A}^k, 1 \leq i \leq m, \mathcal{A}^* u \mathcal{A}^i \Theta(u) \mathcal{A}^* \cap L = \emptyset$
- L is Θ -k-code if $\forall u, v \in \mathcal{A}^k \cap L, u \neq \Theta(v)$
- L is bond-free if ∀u, v ∈ A^k ∩ L, H(u, Θ(v)) > d, where H is the Hamming distance
- frequency of C and G in each word should be $\frac{1}{2}$

• • • • •

to avoid possible hybridizations, we impose several constraints on L

- L is Θ -k-m-subword code if $\forall u \in \mathcal{A}^k, 1 \leq i \leq m, \mathcal{A}^* u \mathcal{A}^i \Theta(u) \mathcal{A}^* \cap L = \emptyset$
- L is Θ -k-code if $\forall u, v \in \mathcal{A}^k \cap L, u \neq \Theta(v)$
- L is bond-free if ∀u, v ∈ A^k ∩ L, H(u, Θ(v)) > d, where H is the Hamming distance
- frequency of C and G in each word should be $\frac{1}{2}$
- ...

to avoid possible hybridizations, we impose several constraints on L

- L is Θ -k-m-subword code if $\forall u \in \mathcal{A}^k, 1 \leq i \leq m, \mathcal{A}^* u \mathcal{A}^i \Theta(u) \mathcal{A}^* \cap L = \emptyset$
- L is Θ -k-code if $\forall u, v \in \mathcal{A}^k \cap L, u \neq \Theta(v)$
- L is bond-free if ∀u, v ∈ A^k ∩ L, H(u, Θ(v)) > d, where H is the Hamming distance
- frequency of C and G in each word should be $\frac{1}{2}$

• • • • •

to avoid possible hybridizations, we impose several constraints on L

- L is Θ -k-m-subword code if $\forall u \in \mathcal{A}^k, 1 \leq i \leq m, \mathcal{A}^* u \mathcal{A}^i \Theta(u) \mathcal{A}^* \cap L = \emptyset$
- L is Θ -k-code if $\forall u, v \in \mathcal{A}^k \cap L, u \neq \Theta(v)$
- L is bond-free if ∀u, v ∈ A^k ∩ L, H(u, Θ(v)) > d, where H is the Hamming distance
- frequency of C and G in each word should be $\frac{1}{2}$
- o ...

Constraints on L ...

Conjugates and Θ -conjugates

Proposition (Lyndon and Schützenberger, 1962)

Let $u, v, w \in A^*$ such that uv = vw. Then there exist $p, q \in A^+$ such that u = pq, w = qp and $v = p(qp)^i$ for $i \ge 0$.

Proposition (Kari and Mahalingam, 2007)

Let $u, v, w \in A^+$ such that $uv = \Theta(v)w$, where Θ is an involutive morphism or antimorphism over A.

 $\textcircled{\ }$ If Θ is an antimorphism, then there exist $x,y\in \mathcal{A}^{\ast}$ such that either

•
$$u = xy$$
, $w = y\Theta(x)$ and $v = \Theta(x)$; or

•
$$u = x = \Theta(w)$$
, $y = \Theta(y)$ and $v = y$.

- ② If Θ is a morphism, then there exist x, y ∈ A^* such that u = xy and one of the following hold:
 - $w = y\Theta(x)$ and $v = (\Theta(xy)xy)^i\Theta(x)$ for some $i \ge 0$;

• $w = \Theta(y)x$ and $v = (\Theta(xy)xy)^{i}\Theta(xy)x$ for some $i \ge 0$.

Conjugates and Θ -conjugates

Proposition (Lyndon and Schützenberger, 1962)

Let $u, v, w \in A^*$ such that uv = vw. Then there exist $p, q \in A^+$ such that u = pq, w = qp and $v = p(qp)^i$ for $i \ge 0$.

Proposition (Kari and Mahalingam, 2007)

Let $u, v, w \in A^+$ such that $uv = \Theta(v)w$, where Θ is an involutive morphism or antimorphism over A.

 ${\color{black}\bullet}$ If Θ is an antimorphism, then there exist $x,y\in \mathcal{A}^*$ such that either

•
$$u = xy$$
, $w = y\Theta(x)$ and $v = \Theta(x)$; or

•
$$u = x = \Theta(w)$$
, $y = \Theta(y)$ and $v = y$.

② If Θ is a morphism, then there exist $x, y \in A^*$ such that u = xy and one of the following hold:

• $w = y\Theta(x)$ and $v = (\Theta(xy)xy)^i\Theta(x)$ for some $i \ge 0$;

•
$$w = \Theta(y)x$$
 and $v = (\Theta(xy)xy)'\Theta(xy)x$ for some $i \ge 0$.

Commutativity and $\Theta\text{-}\mathrm{commutativity}$

Proposition (Lyndon and Schützenberger, 1962)

Let $u, v \in A^*$ such that uv = vu. Then there exist $p \in A^+$ such that $u = p^i$ and $w = p^j$ for i, j > 0 (i.e. it has cyclic solution).

Proposition (Kari and Mahalingam, 2007)

Let $u, v \in A^+$ such that $uv = \Theta(v)u$, where Θ is an involutive morphism or antimorphism over A.

 If Θ is an antimorphism, then there exist x, y ∈ A* such that u = x(yx)ⁿ, v = (yx)^m, x = Θ(x), y = Θ(y), m ≥ 1 and n ≥ 0.

2) If Θ is a morphism, then there exists $x \in \mathcal{A}^+$ such that:

• $x = \Theta(x)$, $u = x^i$ and $v = x^j$ for some $i, j \ge 1$;

• $u = x(\Theta(x)x)^i$ and $v = (x\Theta(x))^j$ for some $i \ge 0$ and $j \ge 1$.

Commutativity and $\Theta\text{-}\mathrm{commutativity}$

Proposition (Lyndon and Schützenberger, 1962)

Let $u, v \in A^*$ such that uv = vu. Then there exist $p \in A^+$ such that $u = p^i$ and $w = p^j$ for i, j > 0 (i.e. it has cyclic solution).

Proposition (Kari and Mahalingam, 2007)

Let $u, v \in A^+$ such that $uv = \Theta(v)u$, where Θ is an involutive morphism or antimorphism over A.

• If Θ is an antimorphism, then there exist $x, y \in A^*$ such that $u = x(yx)^n$, $v = (yx)^m$, $x = \Theta(x)$, $y = \Theta(y)$, $m \ge 1$ and $n \ge 0$.

2 If Θ is a morphism, then there exists $x \in A^+$ such that:

•
$$x = \Theta(x)$$
, $u = x^i$ and $v = x^j$ for some $i, j \ge 1$;

• $u = x(\Theta(x)x)^i$ and $v = (x\Theta(x))^j$ for some $i \ge 0$ and $j \ge 1$.

Set of $\Theta\text{-}\mathrm{palindromes}$

Proposition

The set of all Θ -palindromes (Θ being an involutive antimorphism) is not regular.

Lemma (Pumping lemma for regular languages)

Let L be a regular language. Then there exists an integer $p \ge 1$ depending only on L such that every $w \in L$ of length at least p can be written as w = xyz satisfying the following conditions:

$$|y| \ge 1$$
,

$$|xy| \ge p,$$

 \bigcirc for all $i \ge 0$, $xy^i z \in L$.

Proposition

The set of all Θ -palindromes is context-free.

Set of Θ -palindromes

Proposition

The set of all Θ -palindromes (Θ being an involutive antimorphism) is not regular.

Lemma (Pumping lemma for regular languages)

Let L be a regular language. Then there exists an integer $p \ge 1$ depending only on L such that every $w \in L$ of length at least p can be written as w = xyz satisfying the following conditions:

1
$$|y| \ge 1$$
,

$$|xy| \ge p,$$

3 for all $i \ge 0$, $xy^i z \in L$.

Proposition

The set of all Θ -palindromes is context-free.

Set of $\Theta\text{-}\mathrm{palindromes}$

Proposition

The set of all Θ -palindromes (Θ being an involutive antimorphism) is not regular.

Lemma (Pumping lemma for regular languages)

Let L be a regular language. Then there exists an integer $p \ge 1$ depending only on L such that every $w \in L$ of length at least p can be written as w = xyz satisfying the following conditions:

1
$$|y| \ge 1$$
,

$$|xy| \ge p,$$

• for all $i \ge 0$, $xy^i z \in L$.

Proposition

The set of all Θ -palindromes is context-free.

Untitled frame

Proposition

Let Θ be either an involutive morphism or antimorphism and let $w, v, u \in \mathcal{A}^+$ such that $wu = \Theta(u)v$ and $w\Theta(u) = uv$. Then $w = (xy)^m$, $y = (yx)^m$ and $u = (xy)^n x$ for some $x, y \in \mathcal{A}^*$, $x = \Theta(x), y = \Theta(y), m \ge 1, n \ge 0$.

Proposition

Let $u \in A$ be a non-empty word such that $u \neq \Theta(u)$. Then the following statements are equivalent

- **(1)** \sqrt{u} is the product of two non-empty Θ -palindromes.
- There exists a non-empty Θ-palindrome v such that Θ-commutes with u.
- 3 u is a product of two non-empty Θ -palindromes.

Untitled frame

Proposition

Let Θ be either an involutive morphism or antimorphism and let $w, v, u \in \mathcal{A}^+$ such that $wu = \Theta(u)v$ and $w\Theta(u) = uv$. Then $w = (xy)^m$, $y = (yx)^m$ and $u = (xy)^n x$ for some $x, y \in \mathcal{A}^*$, $x = \Theta(x), y = \Theta(y), m \ge 1, n \ge 0$.

Proposition

Let $u \in A$ be a non-empty word such that $u \neq \Theta(u)$. Then the following statements are equivalent

- **1** \sqrt{u} is the product of two non-empty Θ -palindromes.
- There exists a non-empty Θ-palindrome v such that Θ-commutes with u.
- \odot u is a product of two non-empty Θ -palindromes.

DNA computing

Second untitled frame

Proposition

Let Θ be either a morphic or an antimorphic involution and let Σ be such that for all $a \in \Sigma$, $a \neq \Theta(a)$. (...) DNA computing

Lila Kari

Thank you.