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DNA - basics

deoxyribonucleic acid
1950s: DNA carries genetic information (double helix model)

structure: polymer chains - strands consisting of bases attached to
sugar phosphate backbone

4 bases: A, G, T, C
Watson-Crick complementarity: A likes T, C likes G

bases are at a distance of 3,4 &ngstroms, resulting in 18 Mbits per
inch
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Structure of DNA

5 Complementary base pairs

Hydrogen bonds

Sugar-phosphate
backbone

6 /29



ooe

DNA computing
Watson-Crick complementarity and WK-palindromes
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Hamiltonian Path Problem

Leonard Adleman in 1994: Hamiltonian Path Problem
(NP-complete) on a graph with 7 vertices
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Adleman’s DNA computation I

CaTy DNA NAME COMPLEMENT
ATLANTA ACTTGCAG TGAACGTC
BOSTON TCGG AGCC
CHICAGO GGCT CCGA

DETROIT CCGA GGCT
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Adleman’s DNA computation I

CaTy DNA NAME COMPLEMENT
ATLANTA ACTTGCAG TGAACGTC
BOSTON TCGG AGCC
CHICAGO GGCT CCGA
DETROIT CCGA GGCT
ATLANTA - BOSTON GCAGTCGG

ATLANTA - DETROIT GCAGCCGA

BOSTON - CHICAGO GGCT

BOSTON - DETROIT CCGA

BOSTON - ATLANTA ACTT

CHICAGO - DETROIT CCGA
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Adleman’s DNA computation II
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200-node instance would require 10%* Earth masses of DNA
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The likely frame

The scale of this ligation reaction far exceeded what was necessary for the
graph under consideration. For each edge in the graph, approximately 3 1013
copies of the associated oligonucleotides were added to the ligation reaction.
Hence it is likely that vast numbers of DNA molecules encoding the Hamil-
tonian path were created. In theory the creation of a single such molecule
would be sufficient. Hence, for this graph, sub-attomol quantities of oligonu-
cleotides would probably have been sufficient. Alternatively, a much larger

graph could have been processed with the pmol quantities employed here.
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Manipulation with DNA

e 6 6 6 o6 o o

synthesis

denaturing, annealing and ligation
separation - affinity purification
detect

gel electrophoresis

PCR - polymerase chain reaction

cutting (using restriction enzymes)
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Very general model of a DNA calculation

1. select the language - code
2. do the computation

3. decode
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Advantages and drawbacks

Advantages:
@ Size: the information density could go up to 1 bit per cube nm
@ High parallelism: 10° calculations per ml of DNA per second
@ Energy efficiency: 1019 operations per Joule
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Advantages and drawbacks

Advantages:
@ Size: the information density could go up to 1 bit per cube nm
@ High parallelism: 10° calculations per ml of DNA per second
@ Energy efficiency: 1019 operations per Joule

Drawbacks:
@ required mass of DNA
@ reagents

@ need of manipulation by a
human

145 trilfion COs
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What problems can be solved by a DNA computer

Problems solved that can be found in literature:
@ TSP - travelling salesman problem

addition

SAT - satisfiability problem

DES cracking

maximal clique problem
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Intramolecular hybridization - hairpins
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Intermolecular hybridization
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Representing DNA strands

DNA strands are considered in their 5’ — 3’ orientation

19 / 29



Combinatorics on Words

e0

Representing DNA strands

DNA strands are considered in their 5 — 3’ orientation as finite
words over A = {A, G,C, T}

19 / 29



Combinatorics on Words

e0

Representing DNA strands

DNA strands are considered in their 5 — 3’ orientation as finite
words over A = {A, G,C, T}

involutive antimorphism WK: A+~ T, C < G

19 / 29



Combinatorics on Words

e0

Representing DNA strands

DNA strands are considered in their 5 — 3’ orientation as finite
words over A = {A, G,C, T}

involutive antimorphism WK: A+~ T, C < G

an encoding (i.e. initial set of words) for a computation is a
language L C A*
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Questions

How to choose the initial coding set L7
© simulation

@ algorithm

© theory
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Questions

How to choose the initial coding set L7
© simulation

@ algorithm

© theory

Bio-operations vs. L: after each bio-operation the language
changes - do the properties hold?
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Constraints on L ...
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Conjugates and ©-conjugates

Proposition (Lyndon and Schiitzenberger, 1962)

Let u,v,w € A* such that uv = vw. Then there exist p,q € A*
such that u = pq, w = gp and v = p(qp)’ for i > 0.
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Conjugates and ©-conjugates

Proposition (Lyndon and Schiitzenberger, 1962)

Let u,v,w € A* such that uv = vw. Then there exist p,q € AT
such that u = pq, w = gp and v = p(qp)’ for i > 0.

Proposition (Kari and Mahalingam, 2007)

Let u,v,w € A" such that uv = ©(v)w, where © is an involutive
morphism or antimorphism over A.
© /f© is an antimorphism, then there exist x,y € A* such that
either
o u=xy, w=y0O(x) and v = O(x); or
o u=x=0(w), y=0(y) andv =y.
@ /f© is a morphism, then there exist x,y € A* such that
u = xy and one of the following hold:
o w=yO(x) and v = (©(xy)xy)'©(x) for some i > 0;
o w=0(y)x and v = (O(xy)xy) ©(xy)x for some i > 0.
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Commutativity and ©-commutativity

Proposition (Lyndon and Schiitzenberger, 1962)

Let u,v € A* such that uv = vu. Then there exist p € At such
that u = p' and w = p/ fori,j > 0 (i.e. it has cyclic solution).
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Commutativity and ©-commutativity

Proposition (Lyndon and Schiitzenberger, 1962)

Let u,v € A* such that uv = vu. Then there exist p € At such
that u = p' and w = p/ fori,j > 0 (i.e. it has cyclic solution).

Proposition (Kari and Mahalingam, 2007)

Let u,v € A" such that uv = ©(v)u, where © is an involutive
morphism or antimorphism over A.

© /f © is an antimorphism, then there exist x,y € A* such that
u=x(yx)", v=(yx)", x=0(x), y=0(y), m>1 and
n> 0.
Q /f© is a morphism, then there exists x € A" such that:
o x =0(x), u= x" and v = xI for some i,j > 1;
o u=x(0(x)x)" and v = (xO(x)Y for some i >0 and j > 1.

v
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Proposition

The set of all ©-palindromes (© being an involutive antimorphism)
is not regular.
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Set of ©-palindromes

Proposition

The set of all ©-palindromes (© being an involutive antimorphism)
is not regular.

Lemma (Pumping lemma for regular languages)

Let L be a regular language. Then there exists an integer p > 1
depending only on L such that every w € L of length at least p can
be written as w = xyz satisfying the following conditions:

Q |lyl>1,
Q [xy|>p,
© foralli >0, xyiz el

Proposition

The set of all ©-palindromes is context-free.
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Untitled frame

Proposition

Let © be either an involutive morphism or antimorphism and let
w,v,u € AT such that wu = ©(u)v and wO(u) = uv. Then

w = (xy)™, y = (yx)™ and u = (xy)"x for some x,y € A*,
x=0(x),y=0(y), m>1,n>0.

26 / 29



o ting Combinatorics on Words
°

Untitled frame

Proposition

Let © be either an involutive morphism or antimorphism and let
w,v,u € AT such that wu = ©(u)v and wO(u) = uv. Then

w = (xy)™, y = (yx)™ and u = (xy)"x for some x,y € A*,
x=0(x),y=0(y), m>1,n>0.

Proposition

Let u € A be a non-empty word such that u # ©(u). Then the
following statements are equivalent

@ \/u is the product of two non-empty ©-palindromes.

@ There exists a non-empty ©-palindrome v such that
©-commutes with u.

© u is a product of two non-empty ©-palindromes.
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Second untitled frame

Proposition

Let © be either a morphic or an antimorphic involution and let ¥
be such that for all a € ¥, a # O(a).

(...)
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