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DNA computing Combinatorics on Words

DNA - basics

deoxyribonucleic acid

1950s: DNA carries genetic information (double helix model)

structure: polymer chains - strands consisting of bases attached to
sugar phosphate backbone

4 bases: A, G, T, C

Watson-Crick complementarity: A likes T, C likes G

bases are at a distance of 3, 4 ångströms, resulting in 18 Mbits per
inch
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Structure of DNA
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Watson-Crick complementarity and WK-palindromes
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Hamiltonian Path Problem

Leonard Adleman in 1994: Hamiltonian Path Problem
(NP-complete) on a graph with 7 vertices
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Adleman's DNA computation I
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Adleman's DNA computation II

200-node instance would require 1024 Earth masses of DNA

10 / 29



DNA computing Combinatorics on Words

Adleman's DNA computation II

200-node instance would require 1024 Earth masses of DNA

10 / 29



DNA computing Combinatorics on Words

The likely frame
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Manipulation with DNA

synthesis

denaturing, annealing and ligation

separation - a�nity puri�cation

detect

gel electrophoresis

PCR - polymerase chain reaction

cutting (using restriction enzymes)
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Very general model of a DNA calculation

1. select the language - code

2. do the computation

3. decode
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Advantages and drawbacks

Advantages:
Size: the information density could go up to 1 bit per cube nm
High parallelism: 109 calculations per ml of DNA per second
Energy e�ciency: 1019 operations per Joule

Drawbacks:

required mass of DNA

reagents

need of manipulation by a
human

...
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What problems can be solved by a DNA computer

Problems solved that can be found in literature:

TSP - travelling salesman problem

addition

SAT - satis�ability problem

DES cracking

maximal clique problem

...

15 / 29



DNA computing Combinatorics on Words

Intramolecular hybridization - hairpins
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Intermolecular hybridization
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Representing DNA strands

DNA strands are considered in their 5′ → 3′ orientation as �nite
words over ∆ = {A,G ,C ,T}

involutive antimorphism WK: A↔ T , C ↔ G

an encoding (i.e. initial set of words) for a computation is a
language L ⊂ ∆∗
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Questions

How to choose the initial coding set L?
1 simulation
2 algorithm
3 theory

Bio-operations vs. L: after each bio-operation the language
changes - do the properties hold?
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DNA computing Combinatorics on Words

Constraints on L

to avoid possible hybridizations, we impose several constraints on L

L is Θ-k-m-subword code if
∀u ∈ Ak , 1 ≤ i ≤ m,A∗uAiΘ(u)A∗ ∩ L = ∅
L is Θ-k-code if ∀u, v ∈ Ak ∩ L, u 6= Θ(v)

L is bond-free if ∀u, v ∈ Ak ∩ L,H(u,Θ(v)) > d , where H is
the Hamming distance

frequency of C and G in each word should be 1

2

...
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Constraints on L ...
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Conjugates and Θ-conjugates

Proposition (Lyndon and Schützenberger, 1962)

Let u, v ,w ∈ A∗ such that uv = vw. Then there exist p, q ∈ A+

such that u = pq, w = qp and v = p(qp)i for i ≥ 0.

Proposition (Kari and Mahalingam, 2007)

Let u, v ,w ∈ A+ such that uv = Θ(v)w, where Θ is an involutive

morphism or antimorphism over A.
1 If Θ is an antimorphism, then there exist x , y ∈ A∗ such that

either

u = xy, w = yΘ(x) and v = Θ(x); or
u = x = Θ(w), y = Θ(y) and v = y.

2 If Θ is a morphism, then there exist x , y ∈ A∗ such that
u = xy and one of the following hold:

w = yΘ(x) and v =
(
Θ(xy)xy

)i
Θ(x) for some i ≥ 0;

w = Θ(y)x and v =
(
Θ(xy)xy

)i
Θ(xy)x for some i ≥ 0.
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Commutativity and Θ-commutativity

Proposition (Lyndon and Schützenberger, 1962)

Let u, v ∈ A∗ such that uv = vu. Then there exist p ∈ A+ such

that u = pi and w = pj for i , j > 0 (i.e. it has cyclic solution).

Proposition (Kari and Mahalingam, 2007)

Let u, v ∈ A+ such that uv = Θ(v)u, where Θ is an involutive

morphism or antimorphism over A.
1 If Θ is an antimorphism, then there exist x , y ∈ A∗ such that

u = x(yx)n, v = (yx)m, x = Θ(x), y = Θ(y), m ≥ 1 and

n ≥ 0.
2 If Θ is a morphism, then there exists x ∈ A+ such that:

x = Θ(x), u = x i and v = x j for some i , j ≥ 1;

u = x(Θ(x)x)i and v = (xΘ(x))j for some i ≥ 0 and j ≥ 1.
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Set of Θ-palindromes

Proposition

The set of all Θ-palindromes (Θ being an involutive antimorphism)

is not regular.

Lemma (Pumping lemma for regular languages)

Let L be a regular language. Then there exists an integer p ≥ 1
depending only on L such that every w ∈ L of length at least p can

be written as w = xyz satisfying the following conditions:

1 |y | ≥ 1,
2 |xy | ≥ p,

3 for all i ≥ 0, xy iz ∈ L.

Proposition

The set of all Θ-palindromes is context-free.
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Untitled frame

Proposition

Let Θ be either an involutive morphism or antimorphism and let

w , v , u ∈ A+ such that wu = Θ(u)v and wΘ(u) = uv. Then

w = (xy)m, y = (yx)m and u = (xy)nx for some x , y ∈ A∗,
x = Θ(x), y = Θ(y), m ≥ 1, n ≥ 0.

Proposition

Let u ∈ A be a non-empty word such that u 6= Θ(u). Then the

following statements are equivalent

1
√
u is the product of two non-empty Θ-palindromes.

2 There exists a non-empty Θ-palindrome v such that

Θ-commutes with u.

3 u is a product of two non-empty Θ-palindromes.
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Second untitled frame

Proposition

Let Θ be either a morphic or an antimorphic involution and let Σ
be such that for all a ∈ Σ, a 6= Θ(a).
(...)
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