Tilings generated by Pisot numbers

Petr Ambrož (based on work of S. Akiyama)

Doppler Institute & Department of Mathematics Czech Technical University in Prague

Student conference "Combinatorics on Words" Hojsova Stráž, May 17–21, 2010

Outline

- \bigcirc β -numeration
- 2 Tiling construction
- Tiling properties
- 4 Examples

Outline

- \bigcirc β -numeration
- 2 Tiling construction
- 3 Tiling properties
- 4 Examples

Positional numeration system with base $\beta > 1$.

Greedy β -expansion of $x \in \mathbb{R}_{\geq 0}$ for some $k \in \mathbb{N}$

$$x = x_k \beta^k + x_{k-1} \beta^{k-1} + \dots + x_1 \beta + x_0 + x_{-1} \beta^{-1} + \dots$$

with $x_i \in \mathcal{A}_{eta} = \{0,1,\ldots,\lfloor eta \rfloor\}$ and 'greedy condition'

$$\left|x - \sum_{l=1}^{k} x_{i} \beta^{l}\right| < \beta^{l}$$
 for all $k \ge l$.

$$(x)_{\beta} = \underbrace{x_k \, x_{k-1} \cdots x_1 \, x_0}_{\text{integer part}} \bullet \underbrace{x_{-1} \, x_{-2} \, x_{-3} \cdots}_{\text{fractional part}}$$

Positional numeration system with base $\beta > 1$.

Greedy β -expansion of $x \in \mathbb{R}_{\geq 0}$ for some $k \in \mathbb{N}$

$$x = x_k \beta^k + x_{k-1} \beta^{k-1} + \dots + x_1 \beta + x_0 + x_{-1} \beta^{-1} + \dots$$

with $x_i \in \mathcal{A}_\beta = \{0, 1, \dots, \lfloor \beta \rfloor \}$ and 'greedy condition'

$$\left|x - \sum_{l=1}^{k} x_i \beta^i\right| < \beta^l \quad \text{for all } k \ge l.$$

$$(x)_{\beta} = \underbrace{x_k x_{k-1} \cdots x_1 x_0}_{\text{integer part}} \bullet \underbrace{x_{-1} x_{-2} x_{-3} \cdots}_{\text{fractional part}}$$

Positional numeration system with base $\beta > 1$.

Greedy β -expansion of $x \in \mathbb{R}_{\geq 0}$ for some $k \in \mathbb{N}$

$$x = x_k \beta^k + x_{k-1} \beta^{k-1} + \dots + x_1 \beta + x_0 + x_{-1} \beta^{-1} + \dots$$

with $x_i \in \mathcal{A}_{\beta} = \{0,1,\ldots,\lfloor \beta \rfloor \}$ and 'greedy condition'

$$\left|x-\sum_{l=1}^{k}x_{l}\beta^{l}\right|<\beta^{l}$$
 for all $k\geq l$.

$$(x)_{\beta} = \underbrace{x_k x_{k-1} \cdots x_1 x_0}_{\text{integer part}} \bullet \underbrace{x_{-1} x_{-2} x_{-3} \cdots}_{\text{fractional part}}$$

Positional numeration system with base $\beta > 1$.

Greedy β -expansion of $x \in \mathbb{R}_{\geq 0}$ for some $k \in \mathbb{N}$

$$x = x_k \beta^k + x_{k-1} \beta^{k-1} + \dots + x_1 \beta + x_0 + x_{-1} \beta^{-1} + \dots$$

with $x_i \in \mathcal{A}_{\beta} = \{0,1,\ldots,\lfloor \beta \rfloor \}$ and 'greedy condition'

$$\left|x-\sum_{l=1}^{k}x_{l}\beta^{l}\right|<\beta^{l}$$
 for all $k\geq l$.

$$(x)_{\beta} = \underbrace{x_k \, x_{k-1} \cdots x_1 \, x_0}_{\text{integer part}} \bullet \underbrace{x_{-1} \, x_{-2} \, x_{-3} \cdots}_{\text{fractional part}}$$

Rényi expansion of unity

Beta-transformation

$$T_{\beta}(x) = \beta x - \lfloor \beta x \rfloor, \qquad x \in [0, 1)$$

Rényi expansion of 1

$$\mathsf{d}_{\beta}(1) := t_1 t_2 t_2 \cdots, \qquad t_k = \lfloor \beta T_{\beta}^{k-1}(1) \rfloor.$$

Proposition (Parry condition)

A word $u \in \mathcal{A}_{\beta}^*$ is the β -expansion of some $x \in \mathbb{R}_{\geq 0}$ iff $u' <_{\text{lex}} d_{\beta}(1)$ for all u' suffixes of u.

Rényi expansion of unity

Beta-transformation

$$T_{\beta}(x) = \beta x - \lfloor \beta x \rfloor, \qquad x \in [0, 1)$$

Rényi expansion of 1

$$\mathsf{d}_{\beta}(1) := t_1 t_2 t_2 \cdots, \qquad t_k = \lfloor \beta T_{\beta}^{k-1}(1) \rfloor.$$

Proposition (Parry condition)

A word $u \in \mathcal{A}_{\beta}^*$ is the β -expansion of some $x \in \mathbb{R}_{\geq 0}$ iff $u' <_{\text{lex}} d_{\beta}(1)$ for all u' suffixes of u.

Rényi expansion of unity

Beta-transformation

$$T_{\beta}(x) = \beta x - \lfloor \beta x \rfloor, \qquad x \in [0, 1)$$

Rényi expansion of 1

$$\mathsf{d}_{\beta}(1) := t_1 t_2 t_2 \cdots, \qquad t_k = \lfloor \beta T_{\beta}^{k-1}(1) \rfloor.$$

Proposition (Parry condition)

A word $u \in \mathcal{A}_{\beta}^*$ is the β -expansion of some $x \in \mathbb{R}_{\geq 0}$ iff $u' <_{\text{lex}} d_{\beta}(1)$ for all u' suffixes of u.

Set of finite β -expansions

$$Fin(\beta) := \{ x \in \mathbb{R}_{\geq 0} \mid (x)_{\beta} = x_k x_{k-1} \cdots x_1 x_0 \bullet x_{-1} x_{-2} \cdots x_{-l} 0^{\omega} \}$$

Assume β algebraic integer

$$\operatorname{\mathsf{Fin}}(\beta) \subset \mathbb{Z}[1/\beta]_{\geq 0}$$

 β has Property (F) if

$$\operatorname{Fin}(\beta) = \mathbb{Z}[1/\beta]_{\geq 0}$$

Set of finite β -expansions

$$\mathsf{Fin}(\beta) := \{ x \in \mathbb{R}_{\geq 0} \mid (x)_{\beta} = x_k x_{k-1} \cdots x_1 x_0 \bullet x_{-1} x_{-2} \cdots x_{-l} 0^{\omega} \}$$

Assume β algebraic integer

$$\operatorname{\mathsf{Fin}}(\beta) \subset \mathbb{Z}[1/\beta]_{\geq 0}$$

 β has Property (F) if

$$\operatorname{Fin}(\beta) = \mathbb{Z}[1/\beta]_{\geq 0}$$

Set of finite β -expansions

$$\mathsf{Fin}(\beta) := \{ x \in \mathbb{R}_{\geq 0} \mid (x)_{\beta} = x_k x_{k-1} \cdots x_1 x_0 \bullet x_{-1} x_{-2} \cdots x_{-l} 0^{\omega} \}$$

Assume β algebraic unit

$$\operatorname{Fin}(\beta) \subset \mathbb{Z}[1/\beta]_{\geq 0} = \mathbb{Z}[\beta]_{\geq 0}$$

 β has Property (F) if

$$\mathsf{Fin}(\beta) = \mathbb{Z}[1/\beta]_{\geq 0}$$

Set of finite β -expansions

$$Fin(\beta) := \{ x \in \mathbb{R}_{\geq 0} \mid (x)_{\beta} = x_k x_{k-1} \cdots x_1 x_0 \bullet x_{-1} x_{-2} \cdots x_{-l} 0^{\omega} \}$$

Assume β algebraic unit

$$\mathsf{Fin}(eta) \subset \mathbb{Z}[1/eta]_{\geq 0} = \mathbb{Z}[eta]_{\geq 0}$$

 β has Property (F) if

$$\operatorname{\mathsf{Fin}}(\beta) = \mathbb{Z}[1/\beta]_{\geq 0}$$

Outline

- 1 β -numeration
- 2 Tiling construction
- 3 Tiling properties
- 4 Examples

 $\beta > 1$ a Pisot number of degree d = r + 2s with min. polynomial

$$x^{d} = a_{d-1}x^{d-1} + a_{d-2}x^{d-2} + \dots + a_{1}x + a_{0}$$
 $a_{i} \in \mathbb{Z}$

eta>1 a Pisot number of degree d=r+2s with min. polynomial

$$x^{d} = a_{d-1}x^{d-1} + a_{d-2}x^{d-2} + \dots + a_{1}x + a_{0}$$
 $a_{i} \in \mathbb{Z}$

Recall

Pisot number: an algebraic integer $\alpha>1$ such that all the other roots of its minimal polynomial (called its conjugates) are in modulus less than one.

eta>1 a Pisot number of degree d=r+2s with min. polynomial

$$x^{d} = a_{d-1}x^{d-1} + a_{d-2}x^{d-2} + \dots + a_{1}x + a_{0}$$
 $a_{i} \in \mathbb{Z}$

Notation: $\beta = \beta^{(1)}$,

$$\beta^{(2)},\dots,\beta^{(r)} \qquad \text{real conjugates of } \beta$$

$$\beta^{(r+1)},\dots,\beta^{(r+2s)} \qquad \text{complex conjugates of } \beta \text{ such that}$$

$$\beta^{(r+j)} = \overline{\beta^{(r+s+j)}} \text{ for } j=1,\dots,s$$

For $x \in \mathbb{Q}(\beta)$ denote by $x^{(j)}$ its conjugate in $\mathbb{Q}(\beta^{(j)})$

 $\beta > 1$ a Pisot number of degree d = r + 2s with min. polynomial

$$x^{d} = a_{d-1}x^{d-1} + a_{d-2}x^{d-2} + \dots + a_{1}x + a_{0}$$
 $a_{i} \in \mathbb{Z}$

Notation: $\beta = \beta^{(1)}$,

$$eta^{(2)},\ldots,eta^{(r)}$$
 real conjugates of eta
$$eta^{(r+1)},\ldots,eta^{(r+2s)}$$
 complex conjugates of eta such that
$$eta^{(r+j)}=\overline{eta^{(r+s+j)}} \ \ \text{for} \ j=1,\ldots,s$$

For $x \in \mathbb{Q}(\beta)$ denote by $x^{(j)}$ its conjugate in $\mathbb{Q}(\beta^{(j)})$, i.e.,

$$x = x_{d-1}\beta^{d-1} + \dots + x_1\beta + x_0 \mapsto \mapsto x^{(j)} = x_{d-1}(\beta^{(j)})^{d-1} + \dots + x_1\beta^{(j)} + x_0$$

The mapping Φ

Define mapping $\Phi: \mathbb{Q}(\beta) \to \mathbb{R}^{d-1}$

$$\Phi(x) = (x^{(2)}, \dots, x^{(r)}, \\ \Re(x^{(r+1)}), \Im(x^{(r+1)}), \dots, \Re(x^{(r+s)}), \Im(x^{(r+s)}))$$

Proposition

Let β be a Pisot number of degree d. Then $\Phi(\mathbb{Z}[\beta]_{\geq 0})$ is dense in \mathbb{R}^{d-1} , i.e.,

$$\overline{\Phi(\mathbb{Z}[\beta]_{\geq 0})} = \mathbb{R}^{d-1}$$

The mapping Φ

Define mapping $\Phi: \mathbb{Q}(\beta) \to \mathbb{R}^{d-1}$

$$\Phi(x) = (x^{(2)}, \dots, x^{(r)}, \\ \Re(x^{(r+1)}), \Im(x^{(r+1)}), \dots, \Re(x^{(r+s)}), \Im(x^{(r+s)}))$$

Proposition

Let β be a Pisot number of degree d. Then $\Phi(\mathbb{Z}[\beta]_{\geq 0})$ is dense in \mathbb{R}^{d-1} , i.e.,

$$\overline{\Phi(\mathbb{Z}[\beta]_{\geq 0})} = \mathbb{R}^{d-1}$$
.

Notation

- \bullet Fr $\subset \mathcal{A}_\beta^\mathbb{N}$ (countable) set of all fractional parts of $x\in\mathbb{Z}[\beta]_{\geq 0}$
- $S_w := \{x \in \mathbb{Z}[\beta]_{\geq 0} \mid \text{fractional part of } (x)_{\beta} \text{ is } w\}$
- obviously $\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in \operatorname{Fr}} S_w$
- tile $T_w := \overline{\Phi(S_w)}$

Proposition

Let eta be a Pisot number. Then the central tile $T=T_{arepsilon}$ is bounded.

$$z = \sum_{j=0}^{k} z_j(\beta)^j \quad \Rightarrow \quad \phi_i(z) = \sum_{j=0}^{k} z_j(\beta_i)^j \quad \Rightarrow \quad |\phi_i(z)| \text{ bounded}$$

Notation

- ullet Fr $\subset \mathcal{A}^{\mathbb{N}}_{eta}$ (countable) set of all fractional parts of $x\in\mathbb{Z}[eta]_{\geq 0}$
- $S_w := \{x \in \mathbb{Z}[\beta]_{\geq 0} \mid \text{fractional part of } (x)_{\beta} \text{ is } w\}$
- ullet obviously $\mathbb{Z}[eta]_{\geq 0} = igcup_{w \in \mathbf{Fr}} S_w$
- tile $T_w := \overline{\Phi(S_w)}$

Proposition

Let β be a Pisot number. Then the central tile $T = T_{\varepsilon}$ is bounded.

Proof. Any
$$z \in S_{\varepsilon}$$
, inspect $\Phi(z) = (\phi_2(z), \dots, \phi_d(z))$

$$z = \sum_{j=0}^k z_j(\beta)^j \quad \Rightarrow \quad \phi_i(z) = \sum_{j=0}^k z_j(\beta_i)^j \quad \Rightarrow \quad |\phi_i(z)| \text{ bounded}$$

Notation

- ullet Fr $\subset \mathcal{A}^{\mathbb{N}}_{eta}$ (countable) set of all fractional parts of $x\in\mathbb{Z}[eta]_{\geq 0}$
- $S_w := \{x \in \mathbb{Z}[\beta]_{\geq 0} \mid \text{fractional part of } (x)_{\beta} \text{ is } w\}$
- obviously $\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in \mathbf{Fr}} S_w$
- tile $T_w := \overline{\Phi(S_w)}$

Proposition

Let β be a Pisot number. Then the central tile $\mathcal{T}=\mathcal{T}_{\varepsilon}$ is bounded.

Proof. Any
$$z \in S_{\varepsilon}$$
, inspect $\Phi(z) = (\phi_2(z), \dots, \phi_d(z))$

$$z = \sum_{j=0}^{k} z_j(\beta)^j \quad \Rightarrow \quad \phi_i(z) = \sum_{j=0}^{k} z_j(\beta_i)^j \quad \Rightarrow \quad |\phi_i(z)| \text{ bounded}$$

Notation

- ullet Fr $\subset \mathcal{A}^{\mathbb{N}}_{eta}$ (countable) set of all fractional parts of $x\in\mathbb{Z}[eta]_{\geq 0}$
- $S_w := \{x \in \mathbb{Z}[\beta]_{\geq 0} \mid \text{fractional part of } (x)_{\beta} \text{ is } w\}$
- obviously $\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in \mathbf{Fr}} S_w$
- tile $T_w := \overline{\Phi(S_w)}$

Proposition

Let β be a Pisot number. Then the central tile $\mathcal{T}=\mathcal{T}_{\varepsilon}$ is bounded.

Proof. Any
$$z \in S_{\varepsilon}$$
, inspect $\Phi(z) = (\phi_2(z), \dots, \phi_d(z))$

$$z = \sum_{j=0}^k z_j(\beta)^j \quad \Rightarrow \quad \phi_i(z) = \sum_{j=0}^k z_j(\beta_i)^j \quad \Rightarrow \quad |\phi_i(z)| \text{ bounded}$$

Notation

- ullet Fr $\subset \mathcal{A}^{\mathbb{N}}_{eta}$ (countable) set of all fractional parts of $x\in\mathbb{Z}[eta]_{\geq 0}$
- $S_w := \{x \in \mathbb{Z}[\beta]_{\geq 0} \mid \text{fractional part of } (x)_{\beta} \text{ is } w\}$
- obviously $\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in \mathbf{Fr}} S_w$
- tile $T_w := \overline{\Phi(S_w)}$

Proposition

Let β be a Pisot number. Then the central tile $T = T_{\varepsilon}$ is bounded.

Proof. Any
$$z \in S_{\varepsilon}$$
, inspect $\Phi(z) = (\phi_2(z), \dots, \phi_d(z))$

$$z = \sum_{j=0}^k z_j(\beta)^j \quad \Rightarrow \quad \phi_i(z) = \sum_{j=0}^k z_j(\beta_i)^j \quad \Rightarrow \quad |\phi_i(z)| \text{ bounded}$$

Notation

- ullet Fr $\subset \mathcal{A}^{\mathbb{N}}_{eta}$ (countable) set of all fractional parts of $x\in\mathbb{Z}[eta]_{\geq 0}$
- $S_w := \{x \in \mathbb{Z}[\beta]_{\geq 0} \mid \text{fractional part of } (x)_{\beta} \text{ is } w\}$
- obviously $\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in \mathbf{Fr}} S_w$
- tile $T_w := \overline{\Phi(S_w)}$

Proposition

Let β be a Pisot number. Then the central tile $\mathcal{T} = \mathcal{T}_{\varepsilon}$ is bounded.

$$z = \sum_{j=0}^{k} z_j(\beta)^j \quad \Rightarrow \quad \phi_i(z) = \sum_{j=0}^{k} z_j(\beta_i)^j \quad \Rightarrow \quad |\phi_i(z)| \text{ bounded}$$

Notation

- ullet Fr $\subset \mathcal{A}^{\mathbb{N}}_{eta}$ (countable) set of all fractional parts of $x\in\mathbb{Z}[eta]_{\geq 0}$
- $S_w := \{x \in \mathbb{Z}[\beta]_{\geq 0} \mid \text{fractional part of } (x)_{\beta} \text{ is } w\}$
- obviously $\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in \mathbf{Fr}} S_w$
- tile $T_w := \overline{\Phi(S_w)}$

Proposition

Let β be a Pisot number. Then the central tile $\mathcal{T} = \mathcal{T}_{\varepsilon}$ is bounded.

$$z = \sum_{j=0}^{k} z_j(\beta)^j \quad \Rightarrow \quad \phi_i(z) = \sum_{j=0}^{k} z_j(\beta_i)^j \quad \Rightarrow \quad |\phi_i(z)| \text{ bounded}$$

Notation

- ullet Fr $\subset \mathcal{A}^{\mathbb{N}}_{eta}$ (countable) set of all fractional parts of $x\in\mathbb{Z}[eta]_{\geq 0}$
- $S_w := \{x \in \mathbb{Z}[\beta]_{\geq 0} \mid \text{fractional part of } (x)_{\beta} \text{ is } w\}$
- obviously $\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in \mathbf{Fr}} S_w$
- tile $T_w := \overline{\Phi(S_w)}$

Proposition

Let β be a Pisot number. Then the central tile $\mathcal{T} = \mathcal{T}_{\varepsilon}$ is bounded.

$$z = \sum_{j=0}^{k} z_j(\beta)^j \quad \Rightarrow \quad \phi_i(z) = \sum_{j=0}^{k} z_j \underbrace{(\beta_i)^j}_{|z| \le 1} \quad \Rightarrow \quad |\phi_i(z)| \text{ bounded}$$

Notation

- ullet Fr $\subset \mathcal{A}^{\mathbb{N}}_{eta}$ (countable) set of all fractional parts of $x\in\mathbb{Z}[eta]_{\geq 0}$
- $S_w := \{x \in \mathbb{Z}[\beta]_{\geq 0} \mid \text{fractional part of } (x)_{\beta} \text{ is } w\}$
- obviously $\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in \mathbf{Fr}} S_w$
- tile $T_w := \overline{\Phi(S_w)}$

Proposition

Let β be a Pisot number. Then the central tile $\mathcal{T} = \mathcal{T}_{\varepsilon}$ is bounded.

$$z = \sum_{j=0}^{k} z_{j}(\beta)^{j} \quad \Rightarrow \quad \phi_{i}(z) = \sum_{j=0}^{k} z_{j} \underbrace{(\beta_{i})^{j}}_{|\cdot| < 1} \quad \Rightarrow \quad |\phi_{i}(z)| \text{ bounded}$$

Notation

- ullet Fr $\subset \mathcal{A}^{\mathbb{N}}_{eta}$ (countable) set of all fractional parts of $x\in\mathbb{Z}[eta]_{\geq 0}$
- $S_w := \{x \in \mathbb{Z}[\beta]_{\geq 0} \mid \text{fractional part of } (x)_{\beta} \text{ is } w\}$
- obviously $\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in \mathbf{Fr}} S_w$
- tile $T_w := \overline{\Phi(S_w)}$

Proposition

Let β be a Pisot number. Then the central tile $\mathcal{T} = \mathcal{T}_{\varepsilon}$ is bounded.

$$z = \sum_{j=0}^{k} z_{j}(\beta)^{j} \quad \Rightarrow \quad \phi_{i}(z) = \sum_{j=0}^{k} z_{j} \underbrace{(\beta_{i})^{j}}_{|\cdot| < 1} \quad \Rightarrow \quad |\phi_{i}(z)| \text{ bounded}$$

Outline

- 1 β -numeration
- 2 Tiling construction
- Tiling properties
- 4 Examples

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} T_w.$$

$$\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in Fr} S_w$$

$$\Phi(\mathbb{Z}[\beta]_{\geq 0}) = \bigcup_{w \in Fr} \Phi(S_w)$$

$$\mathbb{R}^{d-1} = \overline{\Phi(\mathbb{Z}[\beta]_{\geq 0})} = \overline{\bigcup_{w \in Fr} \Phi(S_w)} \stackrel{(F)}{=} \bigcup_{w \in Fr} \overline{\Phi(S_w)} = \bigcup_{w \in Fr} T_w$$

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} T_w.$$

$$\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in \operatorname{Fr}} S_w$$

$$\Phi(\mathbb{Z}[\beta]_{\geq 0}) = \bigcup_{w \in \operatorname{Fr}} \Phi(S_w)$$

$$\mathbb{R}^{d-1} = \overline{\Phi(\mathbb{Z}[\beta]_{\geq 0})} = \overline{\bigcup_{w \in \operatorname{Fr}} \Phi(S_w)} \xrightarrow{(f)} \overline{\Phi(S_w)} = \overline{\bigcup_{w \in \operatorname{Fr}} \Phi(S_w)}$$

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} T_w.$$

$$\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in Fr} S_w$$

$$\Phi(\mathbb{Z}[\beta]_{\geq 0}) = \bigcup_{w \in Fr} \Phi(S_w)$$

$$\Phi(\mathbb{Z}[\beta]_{\geq 0}) = \overline{\bigcup_{w \in Fr} \Phi(S_w)} \stackrel{(F)}{=} \bigcup_{w \in Fr} \overline{\Phi(S_w)} = \bigcup_{w \in Fr} \overline{\Phi(S_w)} = \overline{\bigcup_{w \in Fr} \Phi(S_w)} = \overline{\bigcup_{w \in Fr}$$

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} T_w.$$

$$\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in Fr} S_w$$

$$\Phi(\mathbb{Z}[\beta]_{\geq 0}) = \bigcup_{w \in Fr} \Phi(S_w)$$

$$\mathbb{R}^{d-1} = \overline{\Phi(\mathbb{Z}[\beta]_{\geq 0})} = \overline{\bigcup_{w \in Fr} \Phi(S_w)} \stackrel{(F)}{=} \bigcup_{w \in Fr} \overline{\Phi(S_w)} = \bigcup_{w \in Fr} T_w$$

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} T_w.$$

Proof:

$$\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in Fr} S_w$$

$$\Phi(\mathbb{Z}[\beta]_{\geq 0}) = \bigcup_{w \in Fr} \Phi(S_w)$$

$$\mathbb{R}^{d-1} = \overline{\Phi(\mathbb{Z}[\beta]_{\geq 0})} = \overline{\bigcup_{w \in Fr} \Phi(S_w)} \stackrel{(F)}{=} \bigcup_{w \in Fr} \overline{\Phi(S_w)} = \bigcup_{w \in Fr} T_w$$

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} T_w.$$

Proof:

$$\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in \mathsf{Fr}} S_w$$

$$\Phi(\mathbb{Z}[\beta]_{\geq 0}) = \bigcup_{w \in \mathsf{Fr}} \Phi(S_w)$$

$$\mathbb{R}^{d-1} = \overline{\Phi(\mathbb{Z}[\beta]_{\geq 0})} = \overline{\bigcup_{w \in \mathsf{Fr}} \Phi(S_w)} \stackrel{(F)}{=} \bigcup_{w \in \mathsf{Fr}} \overline{\Phi(S_w)} = \bigcup_{w \in \mathsf{Fr}} \mathcal{T}_w$$

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} \mathcal{T}_w$$
 .

Proof:

$$\mathbb{Z}[\beta]_{\geq 0} = \bigcup_{w \in Fr} S_w$$

$$\Phi(\mathbb{Z}[\beta]_{\geq 0}) = \bigcup_{w \in Fr} \Phi(S_w)$$

$$\mathbb{R}^{d-1} = \overline{\Phi(\mathbb{Z}[\beta]_{\geq 0})} = \overline{\bigcup_{w \in Fr} \Phi(S_w)} \stackrel{(F)}{=} \bigcup_{w \in Fr} \overline{\Phi(S_w)} = \bigcup_{w \in Fr} T_w$$

```
Inn(X) = the interior of the set X (the union of all open sets in X) \partial(X) = the set of boundary elements of X
```

Proposition

Let β be a Pisot unit with (F). Then for each $x \in S_{\varepsilon}$ we have $\Phi(x) \in Inn(T_{\varepsilon})$.

Corollary. For each
$$x \in S_w$$
 we have $\Phi(x) \in Inn(T_w)$. Moreover, $\overline{Inn(T_w)} = T_w$.

Proposition

Let β be a Pisot unit with (F), $d_{\beta}(1) = t_1 \cdots t_{m-1}1$. Then each tile T_w is arcwise connected.

```
Inn(X) = the interior of the set X (the union of all open sets in X) \partial(X) = the set of boundary elements of X
```

Proposition

Let β be a Pisot unit with (F). Then for each $x \in S_{\varepsilon}$ we have $\Phi(x) \in Inn(T_{\varepsilon})$.

```
Corollary. For each x \in S_w we have \Phi(x) \in Inn(T_w). Moreover, \overline{Inn(T_w)} = T_w.

Corollary. \partial(T_w) is closed and nowhere dense in \mathbb{R}^{d-1}.
```

Proposition

Let eta be a a Pisot unit with (F), $d_{eta}(1) = t_1 \cdots t_{m-1}1$. Then each tile T_w is arcwise connected.

Inn(X) = the interior of the set X (the union of all open sets in X) $\partial(X) =$ the set of boundary elements of X

Proposition

Let β be a Pisot unit with (F). Then for each $x \in S_{\varepsilon}$ we have $\Phi(x) \in Inn(T_{\varepsilon})$.

Corollary. For each
$$x \in S_w$$
 we have $\Phi(x) \in Inn(T_w)$. Moreover, $\overline{Inn(T_w)} = T_w$.

D ...

Let β be a Pisot unit with (F), $d_{\beta}(1) = t_1 \cdots t_{m-1}1$. Then each tile T_w is arcwise connected.

Inn(X) = the interior of the set X (the union of all open sets in X) $\partial(X) =$ the set of boundary elements of X

Proposition

Let β be a Pisot unit with (F). Then for each $x \in S_{\varepsilon}$ we have $\Phi(x) \in Inn(T_{\varepsilon})$.

Corollary. For each $x \in S_w$ we have $\Phi(x) \in Inn(T_w)$. Moreover, $\overline{Inn(T_w)} = T_w$.

Corollary. $\partial(T_w)$ is closed and nowhere dense in \mathbb{R}^{d-1} .

Proposition

Let β be a a Pisot unit with (F), $d_{\beta}(1) = t_1 \cdots t_{m-1} 1$ Then each tile T_w is arcwise connected.

Inn(X) = the interior of the set X (the union of all open sets in X) $\partial(X)$ = the set of boundary elements of X

Proposition

Let β be a Pisot unit with (F). Then for each $x \in S_{\varepsilon}$ we have $\Phi(x) \in Inn(T_{\varepsilon})$.

Corollary. For each $x \in S_w$ we have $\Phi(x) \in Inn(T_w)$. Moreover, $\overline{Inn(T_w)} = T_w$.

Corollary. $\partial(T_w)$ is closed and nowhere dense in \mathbb{R}^{d-1} .

Inn(X) = the interior of the set X (the union of all open sets in X) $\partial(X)$ = the set of boundary elements of X

Proposition

Let β be a Pisot unit with (F). Then for each $x \in S_{\varepsilon}$ we have $\Phi(x) \in Inn(T_{\varepsilon})$.

Corollary. For each $x \in S_w$ we have $\Phi(x) \in Inn(T_w)$. Moreover, $\overline{Inn(T_w)} = T_w$.

Corollary. $\partial(T_w)$ is closed and nowhere dense in \mathbb{R}^{d-1} .

Proposition

Let β be a Pisot unit with (F), $d_{\beta}(1) = t_1 \cdots t_{m-1} 1$. Then each tile T_w is arcwise connected.

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} T_w \,.$$

Property (W): For any $x \in \mathbb{Z}[1/\beta]_{\geq 0}$ and $\epsilon > 0$ there exist $y, z \in \operatorname{Fin}(\beta)$ with $|z| < \epsilon$ such that x = y - z.

- origin is inner point of $\bigcup_{w \in \mathcal{P}} T_w$ for finite \mathcal{P}
- $T_w = \overline{\ln n(T_w)}$ for any $w \in Fr$
- ullet $\mu(\partial(\mathcal{T}_w))=0$, where $\mu=\mu_{n-1}$ Lebesgue measure of \mathbb{R}^{d-1}

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} T_w \,.$$

Property (W): For any $x \in \mathbb{Z}[1/\beta]_{\geq 0}$ and $\epsilon > 0$ there exist $y, z \in \operatorname{Fin}(\beta)$ with $|z| < \epsilon$ such that x = y - z.

- origin is inner point of $\bigcup_{w \in \mathcal{P}} T_w$ for finite \mathcal{P}
- $T_w = \overline{Inn(T_w)}$ for any $w \in Fr$
- \bullet $\mu(\partial(\mathcal{T}_w))=0$, where $\mu=\mu_{n-1}$ Lebesgue measure of \mathbb{R}^{d-1}

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} T_w \,.$$

Property (W): For any $x \in \mathbb{Z}[1/\beta]_{\geq 0}$ and $\epsilon > 0$ there exist $y, z \in \operatorname{Fin}(\beta)$ with $|z| < \epsilon$ such that x = y - z.

- origin is inner point of $\bigcup_{w \in \mathcal{P}} T_w$ for finite \mathcal{P}
- $T_w = \overline{Inn(T_w)}$ for any $w \in Fr$
- $\mu(\partial(T_w)) = 0$, where $\mu = \mu_{n-1}$ Lebesgue measure of \mathbb{R}^{d-1}

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} T_w \,.$$

Property (W): For any $x \in \mathbb{Z}[1/\beta]_{\geq 0}$ and $\epsilon > 0$ there exist $y, z \in \text{Fin}(\beta)$ with $|z| < \epsilon$ such that x = y - z.

- origin is inner point of $\bigcup_{w \in \mathcal{P}} T_w$ for finite \mathcal{P}
- $T_w = \overline{Inn(T_w)}$ for any $w \in Fr$
- $\mu(\partial(T_w)) = 0$, where $\mu = \mu_{n-1}$ Lebesgue measure of \mathbb{R}^{d-1}

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} T_w \,.$$

Property (W): For any $x \in \mathbb{Z}[1/\beta]_{\geq 0}$ and $\epsilon > 0$ there exist $y, z \in \text{Fin}(\beta)$ with $|z| < \epsilon$ such that x = y - z.

- origin is inner point of $\bigcup_{w \in \mathcal{P}} T_w$ for finite \mathcal{P}
- $T_w = \overline{Inn(T_w)}$ for any $w \in Fr$
- $\mu(\partial(T_w)) = 0$, where $\mu = \mu_{n-1}$ Lebesgue measure of \mathbb{R}^{d-1}

Proposition

Let β be a Pisot number of degree d with Property (F). Then

$$\mathbb{R}^{d-1} = \bigcup_{w \in \mathsf{Fr}} T_w \,.$$

Property (W): For any $x \in \mathbb{Z}[1/\beta]_{\geq 0}$ and $\epsilon > 0$ there exist $y, z \in \text{Fin}(\beta)$ with $|z| < \epsilon$ such that x = y - z.

- origin is inner point of $\bigcup_{w \in \mathcal{P}} T_w$ for finite \mathcal{P}
- $T_w = \overline{Inn(T_w)}$ for any $w \in Fr$
- $\mu(\partial(T_w)) = 0$, where $\mu = \mu_{n-1}$ Lebesgue measure of \mathbb{R}^{d-1}

Proposition

Let β be a Pisot unit such that $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} \cdots t_{m+p})^{\omega}$ and m, p are minimal possible. Then there are exactly m + p tiles up to translation.

Proof:

- $\mathscr{D} := \mathsf{set}$ of all suffixes of $\mathsf{d}_\beta(1)$, \mathscr{D} necessarily finite
- $\mathscr{D} = \{d_1, \dots, d_\ell\}$ such that $d_i <_{\mathsf{lex}} d_{i+1}$, $\forall i = 1, \dots, \ell-1$

Consider S_w for some $w \in Fr$. If

 $d_i \leq_{\mathsf{lex}} w$, for some $i, d_i = t_{q_i} t_{q_i+1} \cdots, q_i \geq 2$

then for $x \in S_w$, $(x)_{\beta} = x_n x_{n-1} \cdots x_0 \cdot w$ we have

 $x_{q_i-2}x_{q_i-3}\cdots x_0<_{\text{lex}}t_1t_2\cdots t_{q_i-1}$

Proposition

Let β be a Pisot unit such that $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} \cdots t_{m+p})^{\omega}$ and m, p are minimal possible. Then there are exactly m + p tiles up to translation.

Proof:

- $\mathscr{D} := \mathsf{set}$ of all suffixes of $\mathsf{d}_\beta(1)$, \mathscr{D} necessarily finite
- ullet $\mathscr{D}=\{d_1,\ldots,d_\ell\}$ such that $d_i<_{\mathsf{lex}}d_{i+1},\, orall i=1,\ldots,\ell-1$

Consider S_w for some $w \in Fr$. If

$$d_i \leq_{\text{lex}} w$$
, for some i , $d_i = t_{q_i} t_{q_i+1} \cdots, q_i \geq 2$

then for $x \in S_w$, $(x)_{\beta} = x_n x_{n-1} \cdots x_0 \cdot w$ we have

$$x_{q_i-2}x_{q_i-3}\cdots x_0<_{\mathrm{lex}}t_1t_2\cdots t_{q_i-1}$$

Proposition

Let β be a Pisot unit such that $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} \cdots t_{m+p})^{\omega}$ and m, p are minimal possible. Then there are exactly m + p tiles up to translation.

Proof:

- $\mathscr{D} := \mathsf{set}$ of all suffixes of $\mathsf{d}_\beta(1)$, \mathscr{D} necessarily finite
- ullet $\mathscr{D}=\{d_1,\ldots,d_\ell\}$ such that $d_i<_{\mathsf{lex}}d_{i+1}$, $orall i=1,\ldots,\ell-1$

Consider S_w for some $w \in Fr$. If

$$d_i \leq_{\text{lex}} w$$
, for some i , $d_i = t_{q_i} t_{q_i+1} \cdots , q_i \geq 2$

then for $x \in S_w$, $(x)_{\beta} = x_n x_{n-1} \cdots x_0 \cdot w$ we have

$$x_{q_i-2}x_{q_i-3}\cdots x_0 <_{\text{lex}} t_1t_2\cdots t_{q_i-1}$$

Proposition

Let β be a Pisot unit such that $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} \cdots t_{m+p})^{\omega}$ and m, p are minimal possible. Then there are exactly m + p tiles up to translation.

Proof:

- $\mathscr{D} := \mathsf{set}$ of all suffixes of $\mathsf{d}_\beta(1)$, \mathscr{D} necessarily finite
- $ullet \ \mathscr{D} = \{d_1, \dots, d_\ell\}$ such that $d_i <_{\mathsf{lex}} d_{i+1}$, $orall i = 1, \dots, \ell-1$

Consider S_w for some $w \in Fr$. If

$$d_i \leq_{\mathsf{lex}} w$$
, for some i , $d_i = t_{q_i} t_{q_i+1} \cdots, q_i \geq 2$

then for
$$x \in S_w$$
, $(x)_\beta = x_n x_{n-1} \cdots x_0 \cdot w$ we have

$$x_{q_i-2}x_{q_i-3}\cdots x_0 <_{\text{lex}} t_1t_2\cdots t_{q_i-1}$$

Proposition

Let β be a Pisot unit such that $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} \cdots t_{m+p})^{\omega}$ and m, p are minimal possible. Then there are exactly m + p tiles up to translation.

Proof:

- $\mathscr{D} := \mathsf{set}$ of all suffixes of $\mathsf{d}_\beta(1)$, \mathscr{D} necessarily finite
- $ullet \ \mathscr{D} = \{d_1, \dots, d_\ell\}$ such that $d_i <_{\mathsf{lex}} d_{i+1}$, $orall i = 1, \dots, \ell-1$

Consider S_w for some $w \in Fr$. If

$$d_i \leq_{\mathsf{lex}} w$$
, for some i , $d_i = t_{q_i} t_{q_i+1} \cdots, q_i \geq 2$

then for
$$x \in S_w$$
, $(x)_{\beta} = x_n x_{n-1} \cdots x_0 \cdot w$ we have

$$x_{q_i-2}x_{q_i-3}\cdots x_0 <_{\text{lex}} t_1t_2\cdots t_{q_i-1}$$

Proposition

Let β be a Pisot unit such that $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} \cdots t_{m+p})^{\omega}$ and m, p are minimal possible. Then there are exactly m + p tiles up to translation.

Proof:

- $\mathscr{D} := \mathsf{set}$ of all suffixes of $\mathsf{d}_\beta(1)$, \mathscr{D} necessarily finite
- ullet $\mathscr{D}=\{d_1,\ldots,d_\ell\}$ such that $d_i<_{\mathsf{lex}}d_{i+1}$, $orall i=1,\ldots,\ell-1$

Consider S_w for some $w \in Fr$. If

$$d_i \leq_{\mathsf{lex}} w$$
, for some i , $d_i = t_{q_i} t_{q_i+1} \cdots, q_i \geq 2$

then for $x \in S_w$, $(x)_\beta = x_n x_{n-1} \cdots x_0 \cdot w$ we have

$$x_{q_i-2}x_{q_i-3}\cdots x_0 <_{\text{lex}} t_1t_2\cdots t_{q_i-1}$$

1) Assume $d_{\beta}(1) = t_1 \cdots t_m$: $0^{\omega} \in \mathcal{D}$ and $\ell = m + 1$.

Subdivide

$$\operatorname{Fr} = \bigcup_{i=1}^{m} Q_{i}$$
 $Q_{i} = \operatorname{Fr} \cap [d_{i}, d_{i+1}]$

If $i \geq 2$, $w \in \mathcal{Q}_i \Rightarrow d_j \leq_{\mathsf{lex}} w$ for $\forall j \leq i$.

Any $x \in S_w$, $(x)_\beta = x_n x_{n-1} \cdots x_0 \cdot w$ has restrictions on integer parts by d_1, \ldots, d_i

$$x_{q_i-2}x_{q_i-3}\cdots x_0<_{\mathsf{lex}}t_1t_2\cdots t_{q_i-1}$$

Conversely, y such restricted integer part $\Rightarrow y \cdot w$ is eta-expansion Thus

$$S_w = S_{d_i} + \operatorname{val}_{\beta}(w) - \operatorname{val}_{\beta}(d_i) \ \Rightarrow \ T_w = T_{d_i} + \Phi(\operatorname{val}_{\beta}(w) - \operatorname{val}_{\beta}(d_i))$$

1) Assume $d_{\beta}(1) = t_1 \cdots t_m$: $0^{\omega} \in \mathscr{D}$ and $\ell = m + 1$.

Subdivide

$$\operatorname{\mathsf{Fr}} = \bigcup_{i}^{m} \mathcal{Q}_{i} \qquad \mathcal{Q}_{i} = \operatorname{\mathsf{Fr}} \cap [d_{i}, d_{i+1})$$

If $i \geq 2$, $w \in \mathcal{Q}_i \Rightarrow d_j \leq_{\mathsf{lex}} w$ for $\forall j \leq i$. Any $x \in S_w$, $(x)_\beta = x_n x_{n-1} \cdots x_0 \cdot w$ has restrictions on integer parts by d_1, \ldots, d_i

$$x_{q_i-2}x_{q_i-3}\cdots x_0<_{\mathsf{lex}}t_1t_2\cdots t_{q_i-1}$$

Conversely, y such restricted integer part $\Rightarrow y \cdot w$ is β -expansion

$$S_w = S_{d_i} + \mathsf{val}_\beta(w) - \mathsf{val}_\beta(d_i) \ \Rightarrow \ T_w = T_{d_i} + \Phi(\mathsf{val}_\beta(w) - \mathsf{val}_\beta(d_i))$$

1) Assume $d_{\beta}(1) = t_1 \cdots t_m$: $0^{\omega} \in \mathscr{D}$ and $\ell = m + 1$.

Subdivide

$$\operatorname{\mathsf{Fr}} = igcup_{i}^{m} \mathcal{Q}_{i} \qquad \mathcal{Q}_{i} = \operatorname{\mathsf{Fr}} \cap [d_{i}, d_{i+1})$$

If $i \geq 2$, $w \in Q_i \Rightarrow d_i \leq_{lex} w$ for $\forall j \leq i$.

Any $x \in S_w$, $(x)_\beta = x_n x_{n-1} \cdots x_0 \cdot w$ has restrictions on integer parts by d_1, \ldots, d_i

$$x_{q_i-2}x_{q_i-3}\cdots x_0<_{\text{lex}}t_1t_2\cdots t_{q_i-1}$$

Conversely, y such restricted integer part $\Rightarrow y \cdot w$ is β -expansion.

$$S_w = S_{d_i} + \mathsf{val}_\beta(w) - \mathsf{val}_\beta(d_i) \ \Rightarrow \ T_w = T_{d_i} + \Phi(\mathsf{val}_\beta(w) - \mathsf{val}_\beta(d_i))$$

1) Assume $d_{\beta}(1) = t_1 \cdots t_m$: $0^{\omega} \in \mathscr{D}$ and $\ell = m + 1$.

Subdivide

$$\operatorname{\mathsf{Fr}} = \bigcup_{i}^{m} \mathcal{Q}_{i} \qquad \mathcal{Q}_{i} = \operatorname{\mathsf{Fr}} \cap [d_{i}, d_{i+1})$$

If $i \geq 2$, $w \in \mathcal{Q}_i \Rightarrow d_j \leq_{\mathsf{lex}} w$ for $\forall j \leq i$. Any $x \in S_w$, $(x)_\beta = x_n x_{n-1} \cdots x_0 \bullet w$ has restrictions on integer parts by d_1, \ldots, d_i

$$x_{q_j-2}x_{q_j-3}\cdots x_0<_{\mathsf{lex}}t_1t_2\cdots t_{q_j-1}$$

Conversely, y such restricted integer part $\Rightarrow y \cdot w$ is β -expansion. Thus

$$S_w = S_{d_i} + \operatorname{val}_{\beta}(w) - \operatorname{val}_{\beta}(d_i) \Rightarrow T_w = T_{d_i} + \Phi(\operatorname{val}_{\beta}(w) - \operatorname{val}_{\beta}(d_i))$$

1) Assume $d_{\beta}(1) = t_1 \cdots t_m$: $0^{\omega} \in \mathscr{D}$ and $\ell = m + 1$.

Subdivide

$$\operatorname{\mathsf{Fr}} = \bigcup_{i}^{m} \mathcal{Q}_{i} \qquad \mathcal{Q}_{i} = \operatorname{\mathsf{Fr}} \cap [d_{i}, d_{i+1})$$

If $i \ge 2$, $w \in Q_i \Rightarrow d_j \le_{lex} w$ for $\forall j \le i$.

Any $x\in S_w$, $(x)_\beta=x_nx_{n-1}\cdots x_0$ • w has restrictions on integer parts by d_1,\ldots,d_i

$$x_{q_j-2}x_{q_j-3}\cdots x_0<_{\mathsf{lex}}t_1t_2\cdots t_{q_j-1}$$

Conversely, y such restricted integer part $\Rightarrow y \cdot w$ is β -expansion

Thus

$$S_w = S_{d_i} + \operatorname{val}_{\beta}(w) - \operatorname{val}_{\beta}(d_i) \Rightarrow T_w = T_{d_i} + \Phi(\operatorname{val}_{\beta}(w) - \operatorname{val}_{\beta}(d_i))$$

1) Assume $d_{\beta}(1) = t_1 \cdots t_m$: $0^{\omega} \in \mathscr{D}$ and $\ell = m + 1$.

Subdivide

$$\operatorname{\mathsf{Fr}} = \bigcup_{i}^{m} \mathcal{Q}_{i} \qquad \mathcal{Q}_{i} = \operatorname{\mathsf{Fr}} \cap [d_{i}, d_{i+1})$$

If $i \geq 2$, $w \in Q_i \Rightarrow d_i \leq_{\mathsf{lex}} w$ for $\forall j \leq i$.

Any $x \in S_w$, $(x)_\beta = x_n x_{n-1} \cdots x_0 \cdot w$ has restrictions on integer parts by d_1, \ldots, d_i

$$x_{q_j-2}x_{q_j-3}\cdots x_0<_{\mathsf{lex}}t_1t_2\cdots t_{q_j-1}$$

Conversely, y such restricted integer part $\Rightarrow y \cdot w$ is β -expansion Thus

$$S_w = S_{d_i} + \mathsf{val}_\beta(w) - \mathsf{val}_\beta(d_i) \ \Rightarrow \ T_w = T_{d_i} + \Phi(\mathsf{val}_\beta(w) - \mathsf{val}_\beta(d_i))$$

2) Assume $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} \cdots t_{m+l})^{\omega}$: $0^{\omega} \notin \mathcal{D}$ and $\ell = m + l$.

Let $d_0 := 0^{\omega}$ and

$$\mathsf{Fr} = igcup_{i}^{m+l-1} \mathcal{Q}_{i} \qquad \mathcal{Q}_{i} = \mathsf{Fr} \cap [d_{i}, d_{i+1}]$$

The assertion is showed similarly to 1)

2) Assume $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} \cdots t_{m+l})^{\omega}$: $0^{\omega} \notin \mathcal{D}$ and $\ell = m + l$.

Let $d_0 := 0^\omega$ and

$$\mathsf{Fr} = igcup_{i}^{m+l-1} \mathcal{Q}_{i} \qquad \mathcal{Q}_{i} = \mathsf{Fr} \cap [d_{i}, d_{i+1})$$

The assertion is showed similarly to 1).

17 / 26

Outline

- \bigcirc β -numeration
- 2 Tiling construction
- 3 Tiling properties
- 4 Examples

T T1 T2 T01 T11 T02 T12

T 1 1 T2 T01 T11 T21 T02 T12 T22

References

- S.Akiyama and T.Sadahiro, A self-similar tiling generated by the minimal Pisot number, Acta Math. Info. Univ. Ostraviensis **6** (1998) 9–26
- S.Akiyama, Self affine tiling and Pisot numeration system, 'Number Theory and its Applications', K. Györy and S. Kanemitsu (eds.), Kluwer (1999), 7–17
- S. Akiyama, On the boundary of self affine tilings generated by Pisot numbers, Journal of Math. Soc. Japan **54** (2002), 283–308