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Motivation

Theorem

Let u be an infinite recurrent word and such that the frequency of any
factor exists. Then

#{ρ(e)
∣∣ e ∈ Ln+1(u)} ≤ 3∆C(n).

Theorem (Balková, Pelantová)

Let u be an infinite word whose language is closed under reversal and such
that the frequency of any factor exists. Then

#{ρ(e)|e ∈ Ln+1(u)} ≤ 2∆C(n) + 1.

Question: Is it possible to reduce the upper bound for infinite words
invariant under more symmetries?
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Definitions

A = {0, 1, . . . , k − 1}
u ∈ AN, N = {0, 1, 2, . . . }
Ln(u) = set of all factors of length n of u

C(n) = #Ln(u) . . . complexity of u

P(n) = #{p ∈ Ln(u)|p palindrome} . . . palindromic complexity of u

if w = vivi+1 . . . vi+n−1, we call i an occurrence of w in v

u is recurrent if every factor has ∞ many occurrences in u

w ∈ L(u) is RS if wa and wb ∈ L(u) for a, b ∈ A, a 6= b (similarly
LS)

w is special if w is RS or LS

w is BS if w is both RS and LS
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Rauzy graphs

Rauzy graph Γn of order n of u is a directed graph whose set of
vertices is Ln(u) and set of edges is Ln+1(u)

Example

ϕ(0) = 001, ϕ(1) = 01, u = ϕ(u) = 001001010010010100101 . . .
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Reduced Rauzy graphs

a factor e is a simple path of order n if it starts and ends in a special
factor of length n and no other factors of e are special

reduced Rauzy graph Γ̃n of u (of order n) is a directed graph whose
set of vertices is formed by LS and RS factors of Ln(u) and whose set
of edges consists of simple paths
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Factor frequency

ρ(w) = lim
|v |→∞,v∈L(u)

#{occurrences of w in v}
|v |

Theorem (Kirchhoff’s law)

Consider Γn of u with existing frequencies. Denote E (E ′) the set of edges
starting (ending) in the vertex w, then∑

e∈E
ρ(e) = ρ(w) =

∑
e′∈E ′

ρ(e ′).

Corollary

If w is not RS, then ρ(w) = ρ(wa).

{ρ(e)|e edge in Γn} = {ρ(e)|e edge in Γ̃n}.
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Sturmian words

Definition

Let u ∈ AN satisfy C(n) = n + 1 for all n ∈ N. Then u is called Sturmian.
(Necessarily A = {0, 1}.)

L(u) contains one RS and one LS factor of every length ⇒ reduced Rauzy
graphs have either two or three edges

Berthé described for every n the set of frequencies of factors of length n.
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Rough upper bound

Theorem (Boshernitzan)

Let u be an infinite recurrent word and such that the frequency of any
factor exists. Then

#{ρ(e)
∣∣ e ∈ Ln+1(u)} ≤ 3∆C(n).

Proof
#{ρ(e)

∣∣ e ∈ Ln+1(u)} ≤ #{e
∣∣ e edge in Γ̃n}

#{e
∣∣ e edge in Γ̃n} =

∑
w vertex in Γ̃n

#Rext(w)

∑
w vertex in Γ̃n

#Rext(w) =
∑

w vertex in Γ̃n

(#Rext(w)− 1) +
∑

w vertex in Γ̃n

1
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Symmetries preserving frequency

Ψ : A∗ → A∗ is called a symmetry if:

1 Ψ is a bijection,

2 for all w , v ∈ A∗

#{occurrences of w in v} = #{occurrences of Ψ(w) in Ψ(v)}.

Proposition

Ψ is a letter permutation extended to a morphism or antimorphism.

Corollary

Let L(u) be closed under a symmetry Ψ. For all w in L(u) whose
frequency exists

ρ(w) = ρ(Ψ(w)).
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Properties of symmetry

Let u be closed under a finite group G of symmetries containing an
antimorphism. Then

1 G has an even number of elements
2 if w contains all letters, then

1 for any distinct antimorphisms θ1, θ2 ∈ G , we have θ1(w) 6= θ2(w),
2 for any distinct morphisms ϕ1, ϕ2 ∈ G , we have ϕ1(w) 6= ϕ2(w)

3 if w is a θ-palindrome, then θ is an involutive antimorphism
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Reduced Rauzy graphs for “symmetric” words

1 if there is an edge e in Γ̃n

between vertices w and θ(w), then there are #G/2 distinct edges
labeled ρ(e)
otherwise, there are #G distinct edges labeled ρ(e)

2 if an edge e in the reduced Rauzy graph Γ̃n is mapped by θ onto
itself, then e has a θ-palindrome of length either n or n + 1 as its
central factor

3 every θ-palindrome of length n + 1 is the central factor of an edge in
Γ̃n mapped by θ onto itself

4 every θ-palindrome of length n is either the central factor of an edge
mapped by θ onto itself or is a vertex
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Factor versus θ-palindromic complexity

Theorem (Pelantová, Starosta)

Let G be a finite group of symmetries containing an antimorphism and let
u be a uniformly recurrent infinite word whose language is invariant under
all elements of G . Then there exists N ∈ N such that

∆C(n) + #G ≥
∑
θ∈G

(
Pθ(n) + Pθ(n + 1)

)
for all n ≥ N.
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Main theorem

Theorem

Let G be a finite group of symmetries containing an antimorphism and let
u be a uniformly recurrent infinite word whose language is invariant under
all elements of G and such that the frequency of any factor exists. Then
there exists N ∈ N such that

#{ρ(e)|e ∈ Ln+1(u)} ≤ 1

#G

(
4∆C(n) + #G

)
for all n ≥ N.
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Proof

Any element of G maps Γ̃n onto itself.

3∆C(n) ≥ #{e| e edge in Γ̃n} = A + B,

A = number of edges mapped onto themselves by some Ψ ∈ G ,
B = number of edges not mapped onto themselves by any Ψ ∈ G .

A ≤
∑
θ∈G

(
Pθ(n) + Pθ(n + 1)

)
≤ 1

#G

(
4∆C(n) + #G

)
.

#{ρ(e)| e ∈ Ln+1(u)} ≤ 1
k A + 1

2k B = 1
2k A + 1

2k (A + B),

where #G = 2k .
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