Equations in Words

Daniel Dombek

based on Lothaire: Algebraic Combinatorics on words

18-19 May 2011

Table of contents

Preliminaries

- Monoids and submonoids
- Free hulls
- Conjugacy
- 2 Equations in three unknowns
 - Introduction
 - Simple equations
 - Classical equation: $(x^n y^m, z^p)$

3 Solutions and graphs

- Principal solutions
- Fundamental solutions

Equations in three unknowns

Solutions and graphs

Table of contents

Preliminaries

- Monoids and submonoids
- Free hulls
- Conjugacy
- 2 Equations in three unknowns
 - Introduction
 - Simple equations
 - Classical equation: $(x^n y^m, z^p)$

3 Solutions and graphs

- Principal solutions
- Fundamental solutions

Preliminaries	
00000	

Solutions and graphs

Monoids

- $(M, \odot, 1_M)$ is a monoid, if
 - $\odot: M \times M \to M$ associative with neutral element 1_M

Preliminaries	
00000	

Solutions and graphs

Monoids

- $(M, \odot, 1_M)$ is a monoid, if
 - $\odot: M \times M \to M$ associative with neutral element 1_M

•
$$\varphi: M \to N$$
 is a morphism, if

$$\varphi(uv) = \varphi(u)\varphi(v), \quad \varphi(1_M) = 1_N$$

Preliminaries	
00000	

Solutions and graphs 00000000

Monoids

- $(M, \odot, 1_M)$ is a monoid, if
 - $\odot: M \times M \to M$ associative with neutral element 1_M

•
$$\varphi: M \to N$$
 is a morphism, if
 $\varphi(uv) = \varphi(u)\varphi(v), \quad \varphi(1_M) = 1_N$

• A^*, A^+ finite words over an alphabet A

Preliminaries	
00000	

Solutions and graphs

Monoids

- $(M, \odot, 1_M)$ is a monoid, if
 - $\odot: M \times M \rightarrow M$ associative with neutral element 1_M

•
$$\varphi: M \to N$$
 is a morphism, if $\varphi(uv) = \varphi(u)\varphi(v), \quad \varphi(1_M) = 1_N$

• A^*, A^+ finite words over an alphabet A

•
$$w = a_1 a_2 \cdots a_k \in A^* \quad \rightarrow \quad |w| = k$$

Preliminaries	
00000	

Solutions and graphs 00000000

Monoids

- $(M, \odot, 1_M)$ is a monoid, if
 - $\odot: M \times M \to M$ associative with neutral element 1_M

•
$$\varphi: M o N$$
 is a morphism, if $arphi(uv) = \varphi(u)\varphi(v), \quad \varphi(1_M) = 1_N$

• A^*, A^+ finite words over an alphabet A

•
$$w = a_1 a_2 \cdots a_k \in A^* \quad \rightarrow \quad |w| = k$$

• factor, prefix, suffix

Preliminaries	
00000	

Solutions and graphs

Submonoids

• N is a submonoid of M, if

 $N \subset M, \quad 1 \in N, \quad NN \subset N$

Preliminaries	
00000	

Solutions and graphs

Submonoids

• N is a submonoid of M, if

$$N \subset M, \quad 1 \in N, \quad NN \subset N$$

• for any set $X \subset A^*$: X^* submonoid of A^*

Preliminaries	
00000	

Solutions and graphs 00000000

Submonoids

• N is a submonoid of M, if

$$N \subset M, \quad 1 \in N, \quad NN \subset N$$

- for any set $X \subset A^*$: X^* submonoid of A^*
- for any submonoid P ⊂ A*: ∃₁X ⊂ A*, the minimal generating set of P,

$$X = (P \setminus \{1\}) \setminus (P \setminus \{1\})^2$$

Preliminaries	
00000	

Solutions and graphs 00000000

Submonoids

• N is a submonoid of M, if

$$N \subset M, \quad 1 \in N, \quad NN \subset N$$

- for any set $X \subset A^*$: X^* submonoid of A^*
- for any submonoid P ⊂ A*: ∃₁X ⊂ A*, the minimal generating set of P,

$$X = (P \setminus \{1\}) \setminus (P \setminus \{1\})^2$$

• monoid *M* is free, if

 \exists an alphabet *B* and an isomorphism of *B*^{*} onto *M*

Preliminaries	
00000	

Solutions and graphs

Submonoids

• N is a submonoid of M, if

$$N \subset M, \quad 1 \in N, \quad NN \subset N$$

- for any set $X \subset A^*$: X^* submonoid of A^*
- for any submonoid P ⊂ A*: ∃₁X ⊂ A*, the minimal generating set of P,

$$X = (P \setminus \{1\}) \setminus (P \setminus \{1\})^2$$

• monoid *M* is free, if

 \exists an alphabet *B* and an isomorphism of *B*^{*} onto *M*

• the minimal generating set of a free submonoid of A^* is a code

Preliminaries	
000000	

Solutions and graphs 00000000

Free submonoids

Proposition

Let P be a submonoid of A^* , with minimal generating set X. Then the following statements are equivalent:

- P is free
- any equality

$$x_1x_2\cdots x_n = y_1y_2\cdots y_m, \quad x_i, y_i \in X$$

implies n = m and $x_i = y_i$ for all $i \in \hat{n}$

3 for any $w \in A^*$ it holds that

 $pw, wq \in P$ for some $p, q \in P \Rightarrow w \in P$

Preliminaries	
000000	

Solutions and graphs 00000000

Free submonoids

Proposition

Let P be a submonoid of A^* , with minimal generating set X. Then the following statements are equivalent:

- P is free
- any equality

$$x_1x_2\cdots x_n = y_1y_2\cdots y_m, \quad x_i, y_i \in X$$

implies n = m and $x_i = y_i$ for all $i \in \hat{n}$

3 for any $w \in A^*$ it holds that

 $pw, wq \in P$ for some $p, q \in P \Rightarrow w \in P$

Corollary: An intersection of free submonoids of A^* is free.

Preliminaries	
000000	

Solutions and graphs

Defect theorem

Let $X \subset A^*$ and F the minimal free submonoid containing X. The free hull of X is the code generating F.

Preliminaries	
000000	

Solutions and graphs

Defect theorem

Let $X \subset A^*$ and F the minimal free submonoid containing X. The free hull of X is the code generating F.

Theorem (Defect theorem)

The free hull Y of a finite subset $X \subset A^*$, which is not a code, satisfies

$$\#Y \leq \#X - 1.$$

Preliminaries	
000000	

Solutions and graphs

Defect theorem

Let $X \subset A^*$ and F the minimal free submonoid containing X. The free hull of X is the code generating F.

Theorem (Defect theorem)

The free hull Y of a finite subset $X \subset A^*$, which is not a code, satisfies

$$\#Y \leq \#X - 1.$$

Proof: define $\alpha : X \to Y$:

$$x \in X
ightarrow lpha(x) = y \in Y$$
 such that $x \in yY^*$

 α is surjective and not injective \Rightarrow statement holds

Preliminaries	
000000	

Solutions and graphs

Defect theorem

Let $X \subset A^*$ and F the minimal free submonoid containing X. The free hull of X is the code generating F.

Theorem (Defect theorem)

The free hull Y of a finite subset $X \subset A^*$, which is not a code, satisfies

$$\#Y \leq \#X - 1.$$

Proof: define $\alpha : X \to Y$:

$$x \in X \rightarrow \alpha(x) = y \in Y$$
 such that $x \in yY^*$

 α is surjective and not injective \Rightarrow statement holds

Corollary: Each pair of words $x, y \in A^*$ is a code, unless x and y are powers of a single word $z \in A^*$.

Preliminaries	
000000	

Solutions and graphs

Primitive words

A word $x \in A^*$ is primitive if it is not a power of another word.

Primitive words

A word $x \in A^*$ is primitive if it is not a power of another word.

Proposition

Let $x, y \in A^*$. If

$$x^n = y^m \quad m, n \ge 0$$
,

there exists a word z such that $x, y \in z^*$.

In particular, for each word $w \in A^+$ there exists a unique primitive word x such that $w \in x^*$.

Primitive words

A word $x \in A^*$ is primitive if it is not a power of another word.

Proposition

Let $x, y \in A^*$. If

$$x^n = y^m \quad m, n \ge 0$$
,

there exists a word z such that $x, y \in z^*$.

In particular, for each word $w \in A^+$ there exists a unique primitive word x such that $w \in x^*$.

This can be refined as:

Proposition

Let $x, y \in A^*$, n = |x|, m = |y|, d = gcd(n, m). If two powers x^p and y^q have a common prefix of length at least n + m - d, then $x, y \in z^*$ for some z.

Preliminaries ○○○○○●	Equations in three unknowns	Solutions and graphs
a .		

Conjugacy

Two words $x, y \in A^*$ are conjugate if there exist $u, v \in A^*$ such that

$$x = uv$$
, $y = vu$.

Conjugacy - an equivalence relation on A^* , classes generated by a cyclic permutation.

Preliminaries	Equations in three unknowns	Solutions and graphs
00000	00000000	0000000

Conjugacy

Two words $x, y \in A^*$ are conjugate if there exist $u, v \in A^*$ such that

$$x = uv, \quad y = vu.$$

Conjugacy - an equivalence relation on A^* , classes generated by a cyclic permutation.

Proposition

Two words $x, y \in A^+$ are conjugate iff there exists $z \in A^*$ such that

$$xz = zy$$
.

More precisely, this equality holds iff there exist $u, v \in A^*$ such that

$$x = uv$$
, $y = vu$, $z \in u(vu)^*$.

Equations in three unknowns

Solutions and graphs 00000000

Table of contents

Preliminaries

- Monoids and submonoids
- Free hulls
- Conjugacy
- 2 Equations in three unknowns
 - Introduction
 - Simple equations
 - Classical equation: $(x^n y^m, z^p)$

3 Solutions and graphs

- Principal solutions
- Fundamental solutions

Solutions and graphs

Equation in words - motivation

Consider two commuting words $x, y \in A^*$,

$$xy = yx$$
,

it holds

 $x = u^n, y = u^p$, for some $u \in A^*, n, p \ge 0$.

Solutions and graphs

Equation in words - motivation

Consider two commuting words $x, y \in A^*$,

$$xy = yx$$
,

it holds

$$x = u^n, y = u^p$$
, for some $u \in A^*, n, p \ge 0$.

The simplest example of equation in words:

- x, y · · · unknowns
- $xy = yx \cdots$ equation
- morphism α defined by α(x) = uⁿ, α(y) = u^p satisfies α(xy) = α(yx) · · · solution of xy = yx

Definitions I

Equations in three unknowns

Solutions and graphs

 \bullet alphabet of unknowns \cdots Ξ fixed, finite, nonempty set

Definitions I

- \bullet alphabet of unknowns \cdots Ξ fixed, finite, nonempty set
- system of equations $S \cdots$ set of pairs $(e, e') \in \Xi^* \times \Xi^*$

Definitions I

- alphabet of unknowns $\cdots \equiv$ fixed, finite, nonempty set
- system of equations \mathcal{S} \cdots set of pairs $(e,e')\in \Xi^* imes\Xi^*$
- solution of S \cdots any morphism such that $\alpha(e) = \alpha(e')$ for all pairs $(e, e') \in S$

Definitions I

- alphabet of unknowns $\cdots \equiv$ fixed, finite, nonempty set
- system of equations $\mathcal{S} \cdots$ set of pairs $(e,e') \in \Xi^* \times \Xi^*$
- solution of S \cdots any morphism such that $\alpha(e) = \alpha(e')$ for all pairs $(e, e') \in S$

solving finite system of equations \Leftrightarrow solving single equation

Equations in three unknowns

Solutions and graphs 00000000

Definitions II

Morphism $\alpha: \Xi^* \to A^*$ can be:

• total \cdots all letters of A occur in $\alpha(x)$ for some $x \in \Xi$

Equations in three unknowns

Solutions and graphs

Definitions II

Morphism $\alpha: \Xi^* \to A^*$ can be:

- total \cdots all letters of A occur in $\alpha(x)$ for some $x \in \Xi$
- nonerasing $\cdots \alpha(x) \neq 1$ for all $x \in \Xi$

Equations in three unknowns

Solutions and graphs

Definitions II

Morphism $\alpha : \Xi^* \to A^*$ can be:

- total \cdots all letters of A occur in $\alpha(x)$ for some $x \in \Xi$
- nonerasing $\cdots \alpha(x) \neq 1$ for all $x \in \Xi$
- cyclic \cdots exists $v \in A^*$ such that $\alpha(x) \in v^*$ for all $x \in \Xi$

Equations in three unknowns

Solutions and graphs

Definitions II

Morphism $\alpha: \Xi^* \to A^*$ can be:

- total \cdots all letters of A occur in $\alpha(x)$ for some $x \in \Xi$
- nonerasing $\cdots \alpha(x) \neq 1$ for all $x \in \Xi$
- cyclic \cdots exists $v \in A^*$ such that $\alpha(x) \in v^*$ for all $x \in \Xi$

Let $\alpha_1 : \Xi^* \to A_1^*$, $\alpha_2 : \Xi^* \to A_2^*$ be total morphisms. If there is a nonerasing morphism $\theta : A_1^* \to A_2^*$, $\alpha_2 = \theta \circ \alpha_1$, then α_1 divides α_2 $(\alpha_1 \leqslant \alpha_2)$

Equations in three unknowns

Solutions and graphs

Definitions II

Morphism $\alpha: \Xi^* \to A^*$ can be:

- total \cdots all letters of A occur in $\alpha(x)$ for some $x \in \Xi$
- nonerasing $\cdots \alpha(x) \neq 1$ for all $x \in \Xi$
- cyclic \cdots exists $v \in A^*$ such that $\alpha(x) \in v^*$ for all $x \in \Xi$

Let $\alpha_1 : \Xi^* \to A_1^*$, $\alpha_2 : \Xi^* \to A_2^*$ be total morphisms. If there is a nonerasing morphism $\theta : A_1^* \to A_2^*$, $\alpha_2 = \theta \circ \alpha_1$, then α_1 divides α_2 $(\alpha_1 \leqslant \alpha_2)$

 α_1 and α_2 are equivalent ($\alpha_1 \approx \alpha_2$), if $\alpha_1 \leqslant \alpha_2$ and $\alpha_2 \leqslant \alpha_1$.

Preliminarie	es
000000	

Solutions and graphs

Equations I

Proposition

All solutions $\alpha: \Xi^* \to A^*$ of the equation

(xyz, zxy)

Preliminaries	
000000	

Solutions and graphs

Equations I

Proposition

All solutions $\alpha: \Xi^* \to {\it A}^*$ of the equation

(xyz, zxy)

are of the form

$$\alpha(x) = (uv)^{i}u, \quad \alpha(y) = v(uv)^{j}, \quad \alpha(z) = (uv)^{k},$$

where $u, v \in A^*$ and $i, j, k \ge 0$.

Equations in three unknowns

Solutions and graphs

Equations I

Proposition

All solutions $\alpha: \Xi^* \to {\it A}^*$ of the equation

(xyz, zxy)

are of the form

$$\alpha(x) = (uv)^{i}u, \quad \alpha(y) = v(uv)^{j}, \quad \alpha(z) = (uv)^{k},$$

where $u, v \in A^*$ and $i, j, k \ge 0$.

Proof: define $\Theta = \{a, b\}, \ \varphi : \Theta^* \to \Xi^*, \varphi(a) = xy, \varphi(b) = z.$

Equations in three unknowns

Solutions and graphs

Equations I

Proposition

All solutions $\alpha: \Xi^* \to A^*$ of the equation

(xyz, zxy)

are of the form

$$\alpha(x) = (uv)^{i}u, \quad \alpha(y) = v(uv)^{j}, \quad \alpha(z) = (uv)^{k},$$

where $u, v \in A^*$ and $i, j, k \ge 0$.

Proof: define $\Theta = \{a, b\}, \varphi : \Theta^* \to \Xi^*, \varphi(a) = xy, \varphi(b) = z.$

 α solution of (*xyz*, *zxy*) $\Leftrightarrow \alpha \circ \varphi$ solution of (*ab*, *ba*)

Equations in three unknowns

Solutions and graphs

Equations I

Proposition

All solutions $\alpha: \Xi^* \to A^*$ of the equation

(xyz, zxy)

are of the form

$$\alpha(x) = (uv)^{i}u, \quad \alpha(y) = v(uv)^{j}, \quad \alpha(z) = (uv)^{k},$$

where $u, v \in A^*$ and $i, j, k \ge 0$.

Proof: define $\Theta = \{a, b\}, \varphi : \Theta^* \to \Xi^*, \varphi(a) = xy, \varphi(b) = z.$

 α solution of (*xyz*, *zxy*) $\Leftrightarrow \alpha \circ \varphi$ solution of (*ab*, *ba*)

 \rightarrow defect theorem

Preliminarie	s
000000	

Solutions and graphs

Equations II

Proposition

All solutions $\alpha: \Xi^* \to A^*$ of the equation

 (xy^2x, zt^2z)

Preliminarie	s
000000	

Solutions and graphs

Equations II

Proposition

All solutions $\alpha: \Xi^* \to A^*$ of the equation

$$(xy^2x, zt^2z)$$

are of the form

$$\begin{aligned} \alpha(x) &= (uv)^{i}u, \quad \alpha(y) = v(uv)^{j}, \quad \alpha(z) = (uv)^{k}u, \quad \alpha(t) = v(uv)^{l}, \end{aligned}$$

where $u, v \in A^{*}$ and $i, j, k, l \geq 0$ such that $i + j = k + l$.

Preliminaries	5
000000	

Solutions and graphs

Equations II

Proposition

All solutions $\alpha: \Xi^* \to A^*$ of the equation

$$(xy^2x, zt^2z)$$

are of the form

$$\begin{aligned} \alpha(x) &= (uv)^{i}u, \quad \alpha(y) = v(uv)^{j}, \quad \alpha(z) = (uv)^{k}u, \quad \alpha(t) = v(uv)^{l}, \\ \end{aligned}$$
where $u, v \in A^{*}$ and $i, j, k, l \geq 0$ such that $i + j = k + l.$

Proof: set $\alpha(x) = a$, $\alpha(y) = b$, $\alpha(z) = c$, $\alpha(t) = d$

Equations in three unknowns

Solutions and graphs

Equations II

Proposition

All solutions $\alpha: \Xi^* \to A^*$ of the equation

$$(xy^2x, zt^2z)$$

are of the form

$$\begin{aligned} \alpha(x) &= (uv)^{i}u, \quad \alpha(y) = v(uv)^{j}, \quad \alpha(z) = (uv)^{k}u, \quad \alpha(t) = v(uv)^{l}, \\ \end{aligned}$$
where $u, v \in A^{*}$ and $i, j, k, l \geq 0$ such that $i + j = k + l.$

Proof: set $\alpha(x) = a$, $\alpha(y) = b$, $\alpha(z) = c$, $\alpha(t) = d$

equation splits into ab = cd, ba = dc

Equations in three unknowns

Solutions and graphs

Equations II

Proposition

All solutions $\alpha: \Xi^* \to {\it A}^*$ of the equation

$$(xy^2x, zt^2z)$$

are of the form

$$\alpha(x) = (uv)^{i}u, \quad \alpha(y) = v(uv)^{j}, \quad \alpha(z) = (uv)^{k}u, \quad \alpha(t) = v(uv)^{l},$$

where $u, v \in A^{*}$ and $i, j, k, l > 0$ such that $i + j = k + l$.

Proof: set
$$\alpha(x) = a$$
, $\alpha(y) = b$, $\alpha(z) = c$, $\alpha(t) = d$

equation splits into ab = cd, ba = dcWLOG $|a| \ge |c|$, a = ce, d = eb

Equations in three unknowns

Solutions and graphs

Equations II

Proposition

All solutions $\alpha: \Xi^* \to {\it A}^*$ of the equation

$$(xy^2x, zt^2z)$$

are of the form

$$\alpha(x) = (uv)^{i}u, \quad \alpha(y) = v(uv)^{j}, \quad \alpha(z) = (uv)^{k}u, \quad \alpha(t) = v(uv)^{l},$$

where $u, v \in A^{*}$ and $i, i, k, l \ge 0$ such that $i + i = k + l$

Proof: set
$$\alpha(x) = a$$
, $\alpha(y) = b$, $\alpha(z) = c$, $\alpha(t) = d$

equation splits into ab = cd, ba = dcWLOG $|a| \ge |c|$, a = ce, d = eb

$$\rightarrow$$
 bce = *ebc* (previous case)

Preliminarie	es
000000	

Solutions and graphs

Equations III

Proposition

All solutions $\alpha: \Xi^* \to {\sf A}^*$ of the equation

$$((xy)^m x, z^n), m > 1, n > 1$$

Preliminarie	es
000000	

Solutions and graphs

Equations III

Proposition

All solutions $\alpha: \Xi^* \to A^*$ of the equation

$$((xy)^m x, z^n), m > 1, n > 1$$

are cyclic.

Preliminarie	es
000000	

Solutions and graphs

Equations III

Proposition

All solutions $\alpha: \Xi^* \to A^*$ of the equation

$$((xy)^m x, z^n), m > 1, n > 1$$

are cyclic.

Proof: $\alpha(xy)^m$ and $\alpha(z)^n$ have long common prefix \Rightarrow powers of the same word

Equations in three unknowns

Solutions and graphs

Equations III

Proposition

All solutions $\alpha: \Xi^* \to {\it A}^*$ of the equation

$$((xy)^m x, z^n), m > 1, n > 1$$

are cyclic.

Proof: $\alpha(xy)^m$ and $\alpha(z)^n$ have long common prefix \Rightarrow powers of the same word

$$lpha(xy) = u^i$$
, $lpha(z) = u^j$ implies $lpha(x) = u^{jn-im}, \ lpha(y) = u^{i-(jn-im)}.$

Equations in three unknowns

Solutions and graphs

Equations IV

Proposition

All solutions $\alpha: \Xi^* \to A^*$ of the equation

$$(xyx, z^n), \quad n > 1$$

Equations in three unknowns

Solutions and graphs

Equations IV

Proposition

All solutions $\alpha: \Xi^* \to {\it A}^*$ of the equation

$$(xyx, z^n), \quad n > 1$$

are of the form

$$\alpha(x) = (uv)^{i}u, \quad \alpha(y) = vu((uv)^{i+1}u)^{n-2}uv, \quad \alpha(z) = (uv)^{i+1}u,$$

where $u, v \in A^*$ and $i \ge 0$.

Equations in three unknowns

Solutions and graphs

Equations IV

Proposition

All solutions $\alpha: \Xi^* \to {\it A}^*$ of the equation

$$(xyx, z^n), \quad n > 1$$

are of the form

$$\alpha(x) = (uv)^{i}u, \quad \alpha(y) = vu((uv)^{i+1}u)^{n-2}uv, \quad \alpha(z) = (uv)^{i+1}u,$$

where $u, v \in A^*$ and $i \ge 0$.

Proof: if α noncyclic, then $|\alpha(x)| < |\alpha(z)|$

Equations in three unknowns

Solutions and graphs

Equations IV

Proposition

All solutions $\alpha: \Xi^* \to {\it A}^*$ of the equation

$$(xyx, z^n), \quad n > 1$$

are of the form

$$\alpha(x) = (uv)^{i}u, \quad \alpha(y) = vu((uv)^{i+1}u)^{n-2}uv, \quad \alpha(z) = (uv)^{i+1}u,$$

where $u, v \in A^*$ and $i \ge 0$

Proof: if α noncyclic, then $|\alpha(x)| < |\alpha(z)|$ $\alpha(x)\alpha(y)\alpha(x) = \alpha(z)^n \Rightarrow \alpha(z) = \alpha(x)w = t\alpha(x)$ for some $w, t \in A^*$

Equations in three unknowns

Solutions and graphs

Equations IV

Proposition

All solutions $\alpha: \Xi^* \to {\it A}^*$ of the equation

$$(xyx, z^n), \quad n > 1$$

are of the form

$$\alpha(x) = (uv)^{i}u, \quad \alpha(y) = vu((uv)^{i+1}u)^{n-2}uv, \quad \alpha(z) = (uv)^{i+1}u,$$
where $u, v \in A^*$ and $i \ge 0$

Proof: if α noncyclic, then $|\alpha(x)| < |\alpha(z)|$ $\alpha(x)\alpha(y)\alpha(x) = \alpha(z)^n \Rightarrow \alpha(z) = \alpha(x)w = t\alpha(x)$ for some $w, t \in A^*$

 \rightarrow w and t conjugated

Equations in three unknowns

Solutions and graphs

Main theorem

Theorem

For all integers $n, m, p \ge 2$, the equation

 $(x^n y^m, z^p)$

admits only cyclic solutions.

Theorem

Main theorem

For all integers $n, m, p \ge 2$, the equation

$$(x^n y^m, z^p)$$

admits only cyclic solutions.

Proof: by contradiction

suppose there is A finite, $u, v, w \in A^*$ not powers of a common word, $n, m, p \ge 2$ such that $u^m v^n = w^p$ and w has minimal length

Equations in three unknowns

Solutions and graphs

Proof I

noncyclic solution \rightarrow common prefix (suffix) of w^p and u^n (v^m) has bounded length:

Equations in three unknowns

Solutions and graphs

Proof I

noncyclic solution \rightarrow common prefix (suffix) of w^p and u^n (v^m) has bounded length:

$$(n-1)|v|<|w| \ (m-1)|u|<|w|$$

Equations in three unknowns

Solutions and graphs

Proof I

noncyclic solution \rightarrow common prefix (suffix) of w^p and u^n (v^m) has bounded length:

$$(n-1)|v|<|w| \ (m-1)|u|<|w|$$

trivial cases:

• p = 3 and $n, m \ge 3$

 $\rightarrow \text{ contradiction}$

Solutions and graphs

Proof II

1
$$n = 2, m \ge 3, p = 3.$$

Equations in three unknowns

Solutions and graphs

Proof II

1
$$n = 2, m \ge 3, p = 3$$
. It holds $|w| < |u^2| < 2|w|$, and

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^m$, where $w = w_1 w_2$.

Equations in three unknowns

Solutions and graphs

Proof II

1
$$n = 2, m \ge 3, p = 3$$
. It holds $|w| < |u^2| < 2|w|$, and

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^m$, where $w = w_1 w_2$.

 \rightarrow previous case (*xyx*, *zⁿ*) \rightarrow contradiction

Solutions and graphs

Proof II

1
$$n = 2, m \ge 3, p = 3$$
. It holds $|w| < |u^2| < 2|w|$, and

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^m$, where $w = w_1 w_2$.

→ previous case
$$(xyx, z^n)$$
 → contradiction
3 $n = m = 2, p = 3.$

Equations in three unknowns

Solutions and graphs

Proof II

1
$$n = 2, m \ge 3, p = 3$$
. It holds $|w| < |u^2| < 2|w|$, and

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^m$, where $w = w_1 w_2$.

→ previous case (xyx, z^n) → contradiction **2** n = m = 2, p = 3. Similar argument is used for

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^2$.

Equations in three unknowns

Solutions and graphs

Proof II

1
$$n = 2, m \ge 3, p = 3$$
. It holds $|w| < |u^2| < 2|w|$, and

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^m$, where $w = w_1 w_2$.

→ previous case (xyx, z^n) → contradiction **2** n = m = 2, p = 3. Similar argument is used for

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^2$.

③
$$n, m ≥ 2, p = 2.$$

Equations in three unknowns

Solutions and graphs

Proof II

1
$$n = 2, m \ge 3, p = 3$$
. It holds $|w| < |u^2| < 2|w|$, and

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^m$, where $w = w_1 w_2$.

→ previous case (xyx, z^n) → contradiction **2** n = m = 2, p = 3. Similar argument is used for

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^2$.

■ $n, m \ge 2, p = 2$. We may assume $w = u^n v_1 = v_2(v_1 v_2)^{m-1}$, where $v = v_1 v_2$.

Equations in three unknowns

Solutions and graphs

Proof II

1
$$n = 2, m \ge 3, p = 3$$
. It holds $|w| < |u^2| < 2|w|$, and

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^m$, where $w = w_1 w_2$.

→ previous case (xyx, z^n) → contradiction **2** n = m = 2, p = 3. Similar argument is used for

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^2$.

■ $n, m \ge 2, p = 2$. We may assume $w = u^n v_1 = v_2(v_1 v_2)^{m-1}$, where $v = v_1 v_2$.

$$ightarrow u^n v_1^2 = (v_2 v_1)^m$$
 and $|w| > |v_2 v_1|$

Equations in three unknowns

Solutions and graphs

Proof II

1
$$n = 2, m \ge 3, p = 3$$
. It holds $|w| < |u^2| < 2|w|$, and

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^m$, where $w = w_1 w_2$.

→ previous case (xyx, z^n) → contradiction **2** n = m = 2, p = 3. Similar argument is used for

$$w_1 w_2 w_1 = u^2$$
, $w_2 w_1 w_2 = v^2$.

■ $n, m \ge 2, p = 2$. We may assume $w = u^n v_1 = v_2(v_1 v_2)^{m-1}$, where $v = v_1 v_2$.

$$ightarrow u^n v_1^2 = (v_2 v_1)^m$$
 and $|w| > |v_2 v_1|$

 \rightarrow contradiction with the minimality of |w|

Equations in three unknowns

Solutions and graphs

Table of contents

Preliminaries

- Monoids and submonoids
- Free hulls
- Conjugacy
- 2 Equations in three unknowns
 - Introduction
 - Simple equations
 - Classical equation: $(x^n y^m, z^p)$

Solutions and graphs

- Principal solutions
- Fundamental solutions

Equations in three unknowns

Solutions and graphs

Parametrization

In previous examples - all solutions can be described by finite number of parameters (words, powers) ··· parametrizable equation

Parametrization

In previous examples - all solutions can be described by finite number of parameters (words, powers) · · · parametrizable equation

Hmelevskii (1976):

- all equations in 3 unknowns are parametrizable
- equations with 4 or more unknowns are not parametrizable (gave an example (xyz, ztx))

Equations in three unknowns

Solutions and graphs OOOOOOO

Principal solutions

Let $\alpha : \Xi^* \to A^*$ solve (e, e'). It is principal if for all solutions $\beta : \Xi^* \to B^*$ holds

$$\beta \leqslant \alpha \; \Rightarrow \; \beta \approx \alpha \, .$$

Equations in three unknowns

Solutions and graphs OOOOOOO

Principal solutions

Let $\alpha : \Xi^* \to A^*$ solve (e, e'). It is principal if for all solutions $\beta : \Xi^* \to B^*$ holds

ł

$$\beta \leqslant \alpha \; \Rightarrow \; \beta \approx \alpha \, .$$

Any solution can be divided by some (unique) principal solution.

Let $\alpha : \Xi^* \to A^*$ solve (e, e'). It is principal if for all solutions $\beta : \Xi^* \to B^*$ holds

$$\beta \leqslant \alpha \; \Rightarrow \; \beta \approx \alpha \, .$$

Any solution can be divided by some (unique) principal solution.

How to find principal solutions?

Let $\alpha : \Xi^* \to A^*$ solve (e, e'). It is principal if for all solutions $\beta : \Xi^* \to B^*$ holds

$$\beta \leqslant \alpha \; \Rightarrow \; \beta \approx \alpha \, .$$

Any solution can be divided by some (unique) principal solution.

How to find principal solutions?

• we define fundamental solutions

Let $\alpha : \Xi^* \to A^*$ solve (e, e'). It is principal if for all solutions $\beta : \Xi^* \to B^*$ holds

$$\beta \leqslant \alpha \; \Rightarrow \; \beta \approx \alpha \, .$$

Any solution can be divided by some (unique) principal solution.

How to find principal solutions?

- we define fundamental solutions
- those are "easy" to get

Let $\alpha: \Xi^* \to A^*$ solve (e, e'). It is principal if for all solutions $\beta: \Xi^* \to B^*$ holds

$$\beta \leqslant \alpha \; \Rightarrow \; \beta \approx \alpha \, .$$

Any solution can be divided by some (unique) principal solution.

How to find principal solutions?

- we define fundamental solutions
- those are "easy" to get
- ullet we show that fundamental solutions pprox principal solutions

Equations in three unknowns

Fundamental solutions I

$$\varphi_{xx'}(y) = \begin{cases} y & \text{if } y \in \Xi \setminus \{x'\}\\ xx' & \text{if } y = x' \end{cases}$$

Equations in three unknowns

Fundamental solutions I

$$\varphi_{xx'}(y) = \begin{cases} y & \text{if } y \in \Xi \setminus \{x'\}\\ xx' & \text{if } y = x' \end{cases}$$

$$\varepsilon_{xx'}(y) = \begin{cases} y & \text{if } y \in \Xi \setminus \{x'\} \\ x & \text{if } y = x' \end{cases}$$

Equations in three unknowns

Solutions and graphs

Fundamental solutions I

We define following morphisms of Ξ^* into Ξ^* :

$$arphi_{xx'}(y) = \left\{ egin{array}{cc} y & ext{if} & y \in \Xi \setminus \{x'\} \ xx' & ext{if} & y = x' \end{array}
ight.$$

$$arepsilon_{xx'}(y) = \left\{ egin{array}{c} y & ext{if} \ y \in \Xi \setminus \{x'\} \ x & ext{if} \ y = x' \end{array}
ight.$$

• consider an equation $(e,e')\in \Xi^* imes\Xi^*$

Equations in three unknowns

Solutions and graphs

Fundamental solutions I

$$arphi_{xx'}(y) = \left\{ egin{array}{cc} y & ext{if} & y \in \Xi \setminus \{x'\} \ xx' & ext{if} & y = x' \end{array}
ight.$$

$$arepsilon_{\mathbf{xx'}}(\mathbf{y}) = \left\{egin{array}{ll} \mathbf{y} & ext{if} \ \mathbf{y} \in \Xi \setminus \{\mathbf{x'}\} \ \mathbf{x} & ext{if} \ \mathbf{y} = \mathbf{x'} \end{array}
ight.$$

- consider an equation $(e,e')\in \Xi^* imes\Xi^*$
- suppose e = gxh, e' = gx'h', where $x, x' \in \Xi$, $x \neq x'$, $g, g', h, h' \in \Xi^*$

Equations in three unknowns

Solutions and graphs

Fundamental solutions I

$$arphi_{xx'}(y) = \left\{ egin{array}{cc} y & ext{if} & y \in \Xi \setminus \{x'\} \ xx' & ext{if} & y = x' \end{array}
ight.$$

$$arepsilon_{\mathbf{xx'}}(\mathbf{y}) = \left\{egin{array}{ll} \mathbf{y} & ext{if} \ \mathbf{y} \in \Xi \setminus \{\mathbf{x'}\} \ \mathbf{x} & ext{if} \ \mathbf{y} = \mathbf{x'} \end{array}
ight.$$

- consider an equation $(e,e')\in \Xi^* imes\Xi^*$
- suppose e = gxh, e' = gx'h', where $x, x' \in \Xi$, $x \neq x'$, $g, g', h, h' \in \Xi^*$
- $\varphi_{xx'}, \varphi_{x'x}$ are regular elementary transformations attached to (e, e')

Equations in three unknowns

Solutions and graphs

Fundamental solutions I

$$arphi_{xx'}(y) = \left\{egin{array}{cc} y & ext{if} & y \in \Xi \setminus \{x'\} \ xx' & ext{if} & y = x' \end{array}
ight.$$

$$arepsilon_{\mathbf{xx'}}(\mathbf{y}) = \left\{egin{array}{ll} \mathbf{y} & ext{if} \ \mathbf{y} \in \Xi \setminus \{\mathbf{x'}\} \ \mathbf{x} & ext{if} \ \mathbf{y} = \mathbf{x'} \end{array}
ight.$$

- consider an equation $(e,e')\in \Xi^* imes\Xi^*$
- suppose e = gxh, e' = gx'h', where $x, x' \in \Xi$, $x \neq x'$, $g, g', h, h' \in \Xi^*$
- $\varphi_{xx'}, \varphi_{x'x}$ are regular elementary transformations attached to (e, e')
- $\varepsilon_{xx'}$ is singular elementary transformation attached to (e,e')

Equations in three unknowns

Fundamental solutions II

A transformation attached to (e, e') is any product $\varphi_n \cdots \varphi_1$ such that for all $i \in \hat{n}, \varphi_i$ is an elementary transformation attached to

$$(\varphi_{i-1}\cdots\varphi_1(e),\varphi_{i-1}\cdots\varphi_1(e')).$$

Equations in three unknowns

Fundamental solutions II

A transformation attached to (e, e') is any product $\varphi_n \cdots \varphi_1$ such that for all $i \in \hat{n}, \varphi_i$ is an elementary transformation attached to

$$(\varphi_{i-1}\cdots\varphi_1(e),\varphi_{i-1}\cdots\varphi_1(e')).$$

Suppose φ attached to (e, e') satisfies $\varphi(e) = \varphi(e')$. Then φ is called a fundamental solution of (e, e').

Equations in three unknowns

Fundamental solutions III

Example

Equations in three unknowns

Fundamental solutions III

Example

Consider the equation (*xyz*, *xzx*):

(x|yz, x|zx)

Equations in three unknowns

Fundamental solutions III

Example

```
(x|yz, x|zx) \stackrel{\varphi_{zy}}{\rightarrow} (xz|yz, xz|x)
```

Equations in three unknowns

Fundamental solutions III

Example

$$(x|yz, x|zx) \stackrel{\varphi_{zy}}{\rightarrow} (xz|yz, xz|x) \stackrel{\varphi_{yx}}{\rightarrow} (yxzy|z, yxzy|x)$$

Equations in three unknowns

Fundamental solutions III

Example

$$(x|yz, x|zx) \stackrel{\varphi_{zy}}{\to} (xz|yz, xz|x) \stackrel{\varphi_{yx}}{\to} (yxzy|z, yxzy|x) \stackrel{\varepsilon_{zx}}{\to} (yzzyz, yzzyz)$$

Equations in three unknowns

Fundamental solutions III

Example

Consider the equation (xyz, xzx):

$$(x|yz,x|zx) \stackrel{\varphi_{zy}}{\to} (xz|yz,xz|x) \stackrel{\varphi_{yx}}{\to} (yxzy|z,yxzy|x) \stackrel{\varepsilon_{zx}}{\to} (yzzyz,yzzyz),$$

hence $\varphi = \varepsilon_{zx} \varphi_{yx} \varphi_{zy}$ is a fundamental solution of (xyz, xzx). It is defined as

$$\varphi(x) = yz, \quad \varphi(y) = zy, \quad \varphi(z) = z.$$

Proposition

Equivalence

Each nonerasing solution $\alpha : \Xi^* \to A^*$ of the equation (e, e') has a unique factorization

$$\alpha = \theta \varphi_n \cdots \varphi_1,$$

where $\varphi_n \cdots \varphi_1$ is a factorization of a fundamental solution of (e, e') into elementary transformations and θ is nonerasing morphism.

Proposition

Equivalence

Each nonerasing solution $\alpha : \Xi^* \to A^*$ of the equation (e, e') has a unique factorization

$$\alpha = \theta \varphi_n \cdots \varphi_1,$$

where $\varphi_n \cdots \varphi_1$ is a factorization of a fundamental solution of (e, e') into elementary transformations and θ is nonerasing morphism.

Note: $\varphi_n \cdots \varphi_1$ is also a principal solution \rightarrow each solution of a given equation can be divided by some unique principal solution

Equations in three unknowns

Graph associated with an equation

• denote by V the subset of $\Xi^* \times \Xi^*$ containing (1,1) and all pairs (f, f') where f, f' nonempty not having common prefix

Equations in three unknowns

Graph associated with an equation

- denote by V the subset of Ξ* × Ξ* containing (1,1) and all pairs (f, f') where f, f' nonempty not having common prefix
- let *E* be a set of edges: $(f, f') \xrightarrow{\varphi} (g, g') \in G \Leftrightarrow \varphi$ is an elementary transformation attached to (f, f') satisfying $\varphi(f) = hg, \varphi(f') = hg'$ with *h* as long as possible

Equations in three unknowns

Graph associated with an equation

- denote by V the subset of $\Xi^* \times \Xi^*$ containing (1,1) and all pairs (f, f') where f, f' nonempty not having common prefix
- let *E* be a set of edges: $(f, f') \xrightarrow{\varphi} (g, g') \in G \Leftrightarrow \varphi$ is an elementary transformation attached to (f, f') satisfying $\varphi(f) = hg, \ \varphi(f') = hg'$ with *h* as long as possible
- the graph associated with (e, e') is defined as induced subgraph G' of G = (V, E) containing only vertices (e, e'), (1,1) and those "in between"

Equations in three unknowns

Graph associated with an equation

- denote by V the subset of $\Xi^* \times \Xi^*$ containing (1,1) and all pairs (f, f') where f, f' nonempty not having common prefix
- let *E* be a set of edges: $(f, f') \xrightarrow{\varphi} (g, g') \in G \Leftrightarrow \varphi$ is an elementary transformation attached to (f, f') satisfying $\varphi(f) = hg, \ \varphi(f') = hg'$ with *h* as long as possible
- the graph associated with (e, e') is defined as induced subgraph G' of G = (V, E) containing only vertices (e, e'), (1,1) and those "in between"
- examples ...

Preliminarie	s
000000	

Solutions and graphs ○○○○○○●

Remarks

Denote:

•
$$|f|_x = #\{ \text{ occurences of } x \in \Xi \text{ in } f \in \Xi^* \}$$

Preliminarie	s
000000	

Solutions and graphs $\circ \circ \circ \circ \circ \circ \circ \bullet$

Remarks

Denote:

- $|f|_x = #\{ \text{ occurences of } x \in \Xi \text{ in } f \in \Xi^* \}$
- $||f|| = \max\{|f|_x, x \in \Xi\}$

Preliminarie	s
000000	

Solutions and graphs

Remarks

Denote:

- $|f|_x = #\{ \text{ occurences of } x \in \Xi \text{ in } f \in \Xi^* \}$
- $||f|| = \max\{|f|_x, x \in \Xi\}$

Proposition

Assume that

- $|e|_x|e'|_x \leq 1$ for all $x \in \Xi$,
- $\max\{\|e\|, \|e'\|\} \le 2.$

Then the graph associated with (e, e') is finite.

Preliminarie	s
000000	

Solutions and graphs $\circ \circ \circ \circ \circ \circ \circ \circ \bullet$

Remarks

Denote:

• $|f|_x = #\{ \text{ occurences of } x \in \Xi \text{ in } f \in \Xi^* \}$

•
$$||f|| = \max\{|f|_x, x \in \Xi\}$$

Proposition

Assume that

- $|e|_x|e'|_x \leq 1$ for all $x \in \Xi$,
- $\max\{\|e\|, \|e'\|\} \le 2.$

Then the graph associated with (e, e') is finite.

Remarks:

• similar procedure for solving equations with constants

Preliminarie	es
000000	

Solutions and graphs $\circ \circ \circ \circ \circ \circ \circ \circ \bullet$

Remarks

Denote:

• $|f|_x = #\{ \text{ occurences of } x \in \Xi \text{ in } f \in \Xi^* \}$

•
$$||f|| = \max\{|f|_x, x \in \Xi\}$$

Proposition

Assume that

- $|e|_x|e'|_x \leq 1$ for all $x \in \Xi$,
- $\max\{\|e\|, \|e'\|\} \le 2.$

Then the graph associated with (e, e') is finite.

Remarks:

- similar procedure for solving equations with constants
- Makanin algorithm decides if a solution exists even if the graph is infinite, nondeterministic but always decides