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Monoids

o (M,®,1p) is a monoid, if

®: M x M — M associative with neutral element 1

@ ¢ : M — N is a morphism, if

p(uv) = p(u)p(v), ¢(lm)=1n

e A* AT finite words over an alphabet A
e w=aja--ax €A — |w|=k

o factor, prefix, suffix
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Submonoids

@ N is a submonoid of M, if
NcM, 1eN, NNCN

o for any set X C A*: X* submonoid of A*
e for any submonoid P C A*: J;X C A*, the minimal
generating set of P,

X =(P\{1H)\(P\ {1})?

@ monoid M is free, if

3 an alphabet B and an isomorphism of B* onto M

@ the minimal generating set of a free submonoid of A* is a code
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Free submonoids

Proposition

Let P be a submonoid of A*, with minimal generating set X. Then
the following statements are equivalent:

Q P is free
@ any equality

X1X2Xp = Y1¥2-** Ym, Xi,Yj € X

implies n = m and x; = y; for all i € i
© for any w € A* it holds that

pw,wq € P for some p,ge P=w € P

6 / 29



Preliminaries Equations in three unknowns Solutions and graphs

[e]e] lelele} 0000000000 00000000

Free submonoids

Proposition

Let P be a submonoid of A*, with minimal generating set X. Then
the following statements are equivalent:

Q P is free
@ any equality

X1X2Xp = Y1¥2-** Ym, Xi,Yj € X

implies n = m and x; = y; for all i € i
© for any w € A* it holds that

pw,wq € P for some p,ge P=w € P

Corollary: An intersection of free submonoids of A* is free.
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Defect theorem

Let X C A* and F the minimal free submonoid containing X. The
free hull of X is the code generating F.
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Defect theorem

Let X C A* and F the minimal free submonoid containing X. The
free hull of X is the code generating F.

Theorem (Defect theorem)

The free hull Y of a finite subset X C A*, which is not a code,

satisfies
H#Y < H#X —-1.
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Let X C A* and F the minimal free submonoid containing X. The
free hull of X is the code generating F.

Theorem (Defect theorem)

The free hull Y of a finite subset X C A*, which is not a code,

satisfies
H#Y < H#X —-1.

Proof: define v : X — Y

x € X = a(x) =y € Y such that x € yY*

« is surjective and not injective = statement holds
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Defect theorem

Let X C A* and F the minimal free submonoid containing X. The
free hull of X is the code generating F.

Theorem (Defect theorem)

The free hull Y of a finite subset X C A*, which is not a code,

satisfies
H#Y < H#X —-1.

Proof: define v : X — Y

x € X = a(x) =y € Y such that x € yY*
« is surjective and not injective = statement holds

Corollary: Each pair of words x,y € A* is a code, unless x and y
are powers of a single word z € A*.

7/ 29



A word x € A* is primitive if it is not a power of another word.
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Primitive words

A word x € A* is primitive if it is not a power of another word.

Proposition
Let x,y € A*. If

x"=y™ mn>0,
there exists a word z such that x,y € z*.

In particular, for each word w € A™ there exists a unique primitive
word x such that w € x*.
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Primitive words

A word x € A* is primitive if it is not a power of another word.

Proposition
Let x,y € A*. If

x"=y™ mn>0,
there exists a word z such that x,y € z*.

In particular, for each word w € A™ there exists a unique primitive
word x such that w € x*.

This can be refined as:
Proposition

Let x,y € A*,n= |x|,m = |y|,d = gcd(n, m). If two powers xP
and y9 have a common prefix of length at least n+ m — d, then
x,y € z* for some z.
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Conjugacy

Two words x,y € A* are conjugate if there exist u, v € A* such
that
X=uv, y=vu.

Conjugacy - an equivalence relation on A*, classes generated by a
cyclic permutation.
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Conjugacy

Two words x,y € A* are conjugate if there exist u, v € A* such
that

X=uv, y=vu.

Conjugacy - an equivalence relation on A*, classes generated by a
cyclic permutation.

Proposition

Two words x,y € AT are conjugate iff there exists z € A* such
that

Xz =zy.

More precisely, this equality holds iff there exist u,v € A* such that

x=uv, y=wu, z¢€u(v)*.

9 /29
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Equation in words - motivation

Consider two commuting words x,y € A*,

Xy = yx,
it holds

x=u",y=uP, forsomeuec A*, n,p>0.
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Equation in words - motivation

Consider two commuting words x,y € A*,
Xy = yx,
it holds

x=u",y=uP, forsomeuec A*, n,p>0.

The simplest example of equation in words:

@ X,y --- unknowns

@ Xy = yx --- equation

@ morphism « defined by a(x) = u", a(y) = uP satisfies
a(xy) = a(yx) --- solution of xy = yx

Solutions and graphs
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@ alphabet of unknowns --- = fixed, finite, nonempty set
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Definitions I

@ alphabet of unknowns - -- = fixed, finite, nonempty set

@ system of equations S --- set of pairs (e, €') € =* x =*
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Definitions I

@ alphabet of unknowns - -- = fixed, finite, nonempty set
@ system of equations S -- - set of pairs (e,€') € =* x =*
@ solution of S --- any morphism such that a(e) = a(e’) for all

pairs (e,e’) € S
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Definitions I

@ alphabet of unknowns - -- = fixed, finite, nonempty set
@ system of equations S -- - set of pairs (e,€') € =* x =*
@ solution of S --- any morphism such that a(e) = a(e’) for all

pairs (e,e’) € S

solving finite system of equations < solving single equation
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Morphism « : =* — A* can be:

o total --- all letters of A occur in a(x) for some x € =
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Definitions II

Morphism « : =* — A* can be:
o total - -- all letters of A occur in «(x) for some x € =

@ nonerasing --- «a(x) # 1 for all x € =
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Definitions II

Morphism « : =* — A* can be:

o total - -- all letters of A occur in «(x) for some x € =
@ nonerasing --- «a(x) # 1 for all x € =
@ cyclic - - exists v € A* such that a(x) € v* for all x € =
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Definitions II

Morphism « : =* — A* can be:

o total - -- all letters of A occur in «(x) for some x € =
@ nonerasing --- «a(x) # 1 for all x € =
@ cyclic - - exists v € A* such that a(x) € v* for all x € =

Let a : =* — A7, ap : =* — A3 be total morphisms. If there is a
nonerasing morphism 6 : A} — A3, ap = 0 o 1, then ay divides ap
(01 < )
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Definitions II

Morphism « : =* — A* can be:

o total - -- all letters of A occur in «(x) for some x € =
@ nonerasing --- «a(x) # 1 for all x € =
@ cyclic - - exists v € A* such that a(x) € v* for all x € =

Let a : =* — A7, ap : =* — A3 be total morphisms. If there is a
nonerasing morphism 6 : A} — A3, ap = 0 o 1, then ay divides ap
(01 < )

ag and ag are equivalent (a1 = ap), if a1 < ap and an < ag.
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Equations I

Proposition
All solutions o : =* — A* of the equation

(xyz, zxy)
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Equations I

Proposition
All solutions o : =* — A* of the equation

(xyz, 2xy)
are of the form
a(x) = (uv)'u, a(y) = v(uv)y,

where u,v € A* and i,j, k > 0.

Solutions and graphs
00000000

o(2) = (w)*,
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Equations I

Proposition
All solutions o : =* — A* of the equation

are of the form
a(x) = (w)'u, aly) =v(uy, ofz)=(uv)*,

where u,v € A* and i,j, k > 0.

Proof: define © = {a, b}, v : ©* = =* ¢(a) = xy, p(b) = z.
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Equations I
Proposition
All solutions o : =* — A* of the equation
(xyz, 2xy)
are of the form
a(x) = (w)'u, aly)=v(wy, ofz)=(w),

where u,v € A* and i, j, k > 0.

Proof: define © = {a, b}, v : ©* = =* ¢(a) = xy, p(b) = z.

« solution of (xyz, zxy) < « o ¢ solution of (ab, ba)

14 / 29



Preliminaries Equations in three unknowns Solutions and graphs
000000 000000000 00000000

Equations I

Proposition
All solutions o : =* — A* of the equation

are of the form
a(x) = @)y, aly) = v(wy, ofz)= ()",

where u,v € A* and i, j, k > 0.

Proof: define © = {a, b}, v : ©* = =* ¢(a) = xy, p(b) = z.
« solution of (xyz, zxy) < « o ¢ solution of (ab, ba)

— defect theorem
14 / 29



Equations II

Proposition
All solutions o : =% — A* of the equation

(xy?x, zt2z)
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Equations II

Proposition
All solutions o : =* — A* of the equation

(xy®x, zt°2)

are of the form

a(x) = (uv)iu, aly) = v(uv)j, a(z) = (uv)ku, at) =

where u,v € A* and i,j, k,| > 0 such that i +j = k + /.

v(uv)!,

Solutions and graphs
00000000
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Equations II

Proposition

All solutions o : =* — A* of the equation
(xy®x, zt°2)
are of the form

a(x) = (uv)iu, aly) = v(uv)j, a(z) = (uv)ku, at) = v(uv)l,

where u,v € A* and i,j, k,| > 0 such that i +j = k + /.

Proof: set a(x) =a, a(y) = b, a(z) = ¢, a(t) =d

15 / 29



Preliminaries Equations in three unknowns Solutions and graphs
000000 0000®00000 00000000

Equations II

Proposition

All solutions o : =* — A* of the equation
(xy®x, zt°2)

are of the form

a(x) = (uv)iu, aly) = v(uv)j, a(z) = (uv)ku, at) = v(uv)l,

where u,v € A* and i,j, k,| > 0 such that i +j = k + /.

Proof: set a(x) =a, a(y) = b, a(z) = ¢, a(t) = d

equation splits into ab = cd, ba = dc

15 / 29
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Equations II

Proposition
All solutions o : =* — A* of the equation

(xy®x, zt°2)

are of the form

a(x) = (uv)iu, aly) = v(uv)j, a(z) = (uv)ku, at) = v(uv)l,

where u,v € A* and i,j, k,| > 0 such that i +j = k + /.

Proof: set a(x) =a, a(y) = b, a(z) = ¢, a(t) = d

equation splits into ab = cd, ba = dc
WLOG |a| > |c|, a=ce,d =eb

15 / 29
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Equations II

Proposition

All solutions o : =* — A* of the equation
(xy®x, zt°2)

are of the form

a(x) = (uv)iu, aly) = v(uv)j, a(z) = (uv)ku, at) = v(uv)l,

where u,v € A* and i,j, k,| > 0 such that i +j = k + /.

Proof: set a(x) =a, a(y) = b, a(z) = ¢, a(t) = d

equation splits into ab = cd, ba = dc
WLOG |a| > |c|, a=ce,d =eb

— bce = ebc (previous case)
15 / 29



Equations III

Proposition
All solutions o : =% — A* of the equation

((xy)™x,2"), m>1,n>1
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Proposition
All solutions o : =% — A* of the equation

((xy)™x,2"), m>1,n>1

are cyclic.
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Equations III

Proposition
All solutions o : =* — A* of the equation

((xy)"x,2"), m>1,n>1

are cyclic.

Proof: a(xy)™ and a(z)" have long common prefix = powers of
the same word

16 / 29
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Equations III

Proposition
All solutions o : =* — A* of the equation

((xy)"x,2"), m>1,n>1

are cyclic.

Proof: a(xy)™ and a(z)" have long common prefix = powers of
the same word

a(xy) = u', a(z) = &/ implies

a(x) — ujn—im’ a(y) _ ui—(jn—im) )

16 / 29



Equations IV

Proposition
All solutions o : =% — A* of the equation

(xyx,z"), n>1
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Equations IV

Proposition
All solutions o : =* — A* of the equation
(xyx,z"), n>1

are of the form

O((X) = (Uv)iu, a(y) = VU((uv)H'lu) n—2uv’ a(z) _ (uv)i+1u,

where u,v € A* and i > 0.

17 / 29
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Equations IV

Proposition

All solutions o : =* — A* of the equation
(xyx,z"), n>1

are of the form

alx) = (uv)'u, oy)= vu((uv)i+1u) "2y,

where u,v € A* and i > 0.

a(z)

Solutions and graphs

00000000

(uv)*tu,

Proof: if a noncyclic, then |a(x)| < |e(2)]

17 / 29



Preliminaries Equations in three unknowns Solutions and graphs
000000 000000®000 00000000

Equations IV

Proposition
All solutions o : =* — A* of the equation
(xyx,z"), n>1

are of the form

a(x) = (uw)u, a(y)= V“((Uv)i+1u)"_2uv, a(2) = () *Hlu,

where u,v € A* and i > 0.

Proof: if a noncyclic, then |a(x)| < |e(2)]

a(x)a(y)a(x) = a(z)" = a(z) = a(x)w = ta(x) for some
w,t e A*

17 / 29
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Equations IV
Proposition
All solutions o : =* — A* of the equation
(xyx,z"), n>1
are of the form

a(x) = (uw)u, a(y)= V“((Uv)i+1u)"_2uv, a(2) = () *Hlu,

where u,v € A* and i > 0.

Proof: if a noncyclic, then |a(x)| < |e(2)]

a(x)a(y)a(x) = a(z)" = a(z) = a(x)w = ta(x) for some
w,t e A*

— w and t conjugated
17 / 29



Main theorem

Theorem
For all integers n,m, p > 2, the equation

(x"y™, 2P)

admits only cyclic solutions.
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Main theorem

Theorem
For all integers n,m, p > 2, the equation

(x"y™, zP)

admits only cyclic solutions.

Proof: by contradiction

suppose there is A finite, u, v, w € A* not powers of a common
word, n,m, p > 2 such that u™v" = wP and w has minimal length

18 / 29



noncyclic solution — common prefix (suffix) of wP and u” (v™)
has bounded length:
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Proof 1

noncyclic solution — common prefix (suffix) of wP and u” (v™)
has bounded length:

(n=1)lv| < |wl
(m = 1)|u < |wl|
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Proof 1

noncyclic solution — common prefix (suffix) of wP and u” (v™)
has bounded length:

(n=1)lv| < |wl
(m = 1)|u < |wl|

trivial cases:
e p=>4
ep=3andnm>3

— contradiction
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@ n=2,m>3p=3. It holds |w| < |u?| < 2|w|, and

wiwews = u?, wowawp = v™,  where w = wiws.
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Proof I1

@ n=2,m>3,p=23. It holds |w| < |v?| < 2|w]|, and

wiwews = u?, wowiws = v™,  where w = wiws .

— previous case (xyx,z") — contradiction
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Proof I1

@ n=2,m>3,p=23. It holds |w| < |v?| < 2|w]|, and

wiwews = u?, wowiws = v™,  where w = wiws .

— previous case (xyx,z") — contradiction
Q@ n=m=2p=3.
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Proof I1

@ n=2,m>3,p=23. It holds |w| < |v?| < 2|w]|, and

wiwews = u?, wowiws = v™,  where w = wiws .

— previous case (xyx,z") — contradiction

Q@ n=m=2p=3. Similar argument is used for

W1W2W1:u2, W2W1W2:V2.
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Proof I1

@ n=2,m>3,p=23. It holds |w| < |v?| < 2|w]|, and

wiwews = u?, wowiws = v™,  where w = wiws .

— previous case (xyx,z") — contradiction

Q@ n=m=2p=3. Similar argument is used for

W1W2W1:u2, W2W1W2:V2.

Q@ nm>2p=2.

20 / 29
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Proof I1

@ n=2,m>3,p=23. It holds |w| < |v?| < 2|w]|, and

wiwews = u?, wowiws = v™,  where w = wiws .

— previous case (xyx,z") — contradiction

Q@ n=m=2p=3. Similar argument is used for

W1W2W1:u2, W2W1W2:V2.

© n,m>2,p=2 We may assume w = u"v; = vp(vyvp)™ "}
where v = vy wo.
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Proof I1

@ n=2,m>3,p=23. It holds |w| < |v?| < 2|w]|, and

wiwews = u?, wowiws = v™,  where w = wiws .

— previous case (xyx,z") — contradiction

Q@ n=m=2p=3. Similar argument is used for

W1W2W1:u2, W2W1W2:V2.

© n,m>2,p=2 We may assume w = u"v; = vp(vyvp)™ "}

where v = vy wo.

— u"vZ = (vav1)™ and |w| > |vavy]

20 / 29
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Proof I1

@ n=2,m>3,p=23. It holds |w| < |v?| < 2|w]|, and

wiwews = u?, wowiws = v™,  where w = wiws .
— previous case (xyx,z") — contradiction
Q@ n=m=2p=3. Similar argument is used for

W1W2W1:u2, W2W1W2:V2.

© n,m>2 p=2 We mayassume w = u"v; = va(viv2)™ 1,
where v = vy wo.
— u"vZ = (vav1)™ and |w| > |vavy]
— contradiction with the minimality of |w|

20 / 29
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Parametrization

In previous examples - all solutions can be described by finite
number of parameters (words, powers) - -- parametrizable equation
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Parametrization

In previous examples - all solutions can be described by finite
number of parameters (words, powers) - -- parametrizable equation

Hmelevskii (1976):

@ all equations in 3 unknowns are parametrizable

@ equations with 4 or more unknowns are not parametrizable
(gave an example (xyz, ztx))

22 /29



Principal solutions

Let a: =* — A* solve (e, €’). It is principal if for all solutions
B :=* — B* holds
b<a = fra.
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Principal solutions

Let o : =* — A* solve (e, €). It is principal if for all solutions
B : =" — B* holds
f<a = fra.
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Principal solutions

Let o : =* — A* solve (e, €). It is principal if for all solutions
B : =" — B* holds
b<a = Bra.

Any solution can be divided by some (unique) principal solution.

How to find principal solutions?
@ we define fundamental solutions
@ those are “easy” to get

@ we show that fundamental solutions == principal solutions

23 / 29
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Fundamental solutions I

*

We define following morphisms of =* into =*:

@xx’(y):{ y/ f yEE\{X,}

xx' if y=x

Solutions and graphs
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We define following morphisms of =* into =*:

Qoxx’(y):{ y/ f yEE\{X,}

xx' if y=x

Exx'(y)_{ y if ye=\{x}

Sl x if y=X

@ consider an equation (e, ') € =* x =*
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We define following morphisms of =* into =*:

Qoxx’(y):{ y/ f yEE\{X,}

xx' if y=x
x if y=x

Exx'(y)_{ y if ye=\{x}

e consider an equation (e, e’) € =* x =*
@ suppose e = gxh, € = gx'h, where x,x’ € =, x # X/,
g.g hHe="
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We define following morphisms of =* into =*:

@xx’(y):{ y/ f yEE\{X,}

xx' if y=x

_Jy ifyez\{x}
e (y) = { x if y=x
e consider an equation (e, e’) € =* x =*
@ suppose e = gxh, € = gx'h, where x,x’ € =, x # X/,

g.g hHe="
@ ¥y, Pxix are regular elementary transformations attached to
/
(e, €)
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Fundamental solutions I
We define following morphisms of =* into =*:

@xx’(y):{ y/ f yEE\{X,}

xx' if y=x

€xx'(y)_{ y if ye=\{x}

x if y=x

e consider an equation (e, e’) € =* x =*

@ suppose e = gxh, € = gx'h, where x,x’ € =, x # X/,
g.8,hhe=*

@ ¥y, Pxix are regular elementary transformations attached to
(e €)

@ £, is singular elementary transformation attached to (e, €’)
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Fundamental solutions II

A transformation attached to (e, €’) is any product ¢, - - - ¢1 such
that for all i € A, ; is an elementary transformation attached to

(pi—1---p1(e), i1+ p1(e')).

25 / 29



Preliminaries Equations in three unknowns Solutions and graphs
000000 0000000000 ©000@0000

Fundamental solutions II

A transformation attached to (e, €’) is any product ¢, - - - ¢1 such
that for all i € A, ; is an elementary transformation attached to

(pi—1---p1(e), i1+ p1(e')).

Suppose ¢ attached to (e, ') satisfies ¢(e) = ¢(€’). Then ¢ is
called a fundamental solution of (e, e’).
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Example

Consider the equation (xyz, xzx):
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Fundamental solutions III

Example

Consider the equation (xyz, xzx):

(xlyz, x|2x) 22 (xz|yz, xz|x) 25 (yxzy|z, yxzy|x)

Solutions and graphs
0000@000
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Fundamental solutions III

Example

Consider the equation (xyz, xzx):

(xlyz, x|2x) 22 (xz|yz, xz|x) 25 (yxzy|z, yxzy|x)

€z,

= (vzzyz, yzzyz)
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Fundamental solutions III

Example

Consider the equation (xyz, xzx):
(xlyz, x|2x) 2 (xzlyz, xz|x) 25 (yxzy|z, yxzy|x) =5 (yzzyz, yzzy2),

hence ¢ = e, xpz, is a fundamental solution of (xyz,xzx). It is
defined as

e(x)=yz, ly)=2zy, p(z)=2z.
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Equivalence

Proposition
Each nonerasing solution o : =* — A* of the equation (e, e') has a
unique factorization
a="0p -1,
where ,, - - - 1 is a factorization of a fundamental solution of

(e, €') into elementary transformations and 6 is nonerasing
morphism.
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Equivalence

Proposition
Each nonerasing solution o : =* — A* of the equation (e, e') has a
unique factorization

a = espn e 801 9
where @, - - - 1 is a factorization of a fundamental solution of
(e, €') into elementary transformations and 6 is nonerasing
morphism.

Note: ¢, -1 is also a principal solution — each solution of a
given equation can be divided by some unique principal solution
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Graph associated with an equation

@ denote by V the subset of =* x =* containing (1,1) and all
pairs (f,f’) where f, ' nonempty not having common prefix
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Graph associated with an equation

@ denote by V the subset of =* x =* containing (1,1) and all
pairs (f,f’) where f, ' nonempty not having common prefix

o let E be a set of edges: (f,f') 5 (g,8') € G < ¢is an
elementary transformation attached to (f, f’) satisfying
o(f) = hg, o(f") = hg’ with h as long as possible
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Graph associated with an equation

@ denote by V the subset of =* x =* containing (1,1) and all
pairs (f,f’) where f, ' nonempty not having common prefix

o let E be a set of edges: (f,f') 5 (g,8') € G < ¢is an
elementary transformation attached to (f, f’) satisfying
o(f) = hg, o(f") = hg’ with h as long as possible

@ the graph associated with (e, ') is defined as induced
subgraph G’ of G = (V, E) containing only vertices (e, €'),
(1,1) and those “in between”

@ examples ...
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o |f|x = #{ occurences of x € = in f € =*}
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Remarks

Denote:

o |f|x = #{ occurences of x € = in f € =*}
o ||f]| = max{|f|x,x € =}

Proposition
Assume that
o |elx|€/|x <1 forallx €=,
o max{|le], [|¢'l|} < 2.
Then the graph associated with (e, €') is finite.

Solutions and graphs
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Proposition

Assume that
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@ similar procedure for solving equations with constants

29 / 29



Preliminaries Equations in three unknowns Solutions and graphs
000000 0000000000 [Slelelelelete] )

Remarks

Denote:
o |f|x = #{ occurences of x € = in f € =*}
o ||f]| = max{|f|x,x € =}

Proposition

Assume that
o le|«|€'|x <1 forallx €=,
o max{|lell, [[¢'} < 2.

Then the graph associated with (e, ') is finite.

Remarks:
@ similar procedure for solving equations with constants
@ Makanin algorithm - decides if a solution exists even if the
graph is infinite, nondeterministic but always decides
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