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Preliminaries Equations in three unknowns Solutions and graphs

Monoids

(M,�, 1M) is a monoid, if

� : M ×M → M associative with neutral element 1M

ϕ : M → N is a morphism, if

ϕ(uv) = ϕ(u)ϕ(v), ϕ(1M) = 1N

A∗,A+ finite words over an alphabet A

w = a1a2 · · · ak ∈ A∗ → |w | = k

factor, prefix, suffix
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Preliminaries Equations in three unknowns Solutions and graphs

Submonoids

N is a submonoid of M, if

N ⊂ M, 1 ∈ N, NN ⊂ N

for any set X ⊂ A∗: X ∗ submonoid of A∗

for any submonoid P ⊂ A∗: ∃1X ⊂ A∗, the minimal
generating set of P,

X = (P \ {1}) \ (P \ {1})2

monoid M is free, if

∃ an alphabet B and an isomorphism of B∗ onto M

the minimal generating set of a free submonoid of A∗ is a code
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Free submonoids

Proposition
Let P be a submonoid of A∗, with minimal generating set X . Then
the following statements are equivalent:
1 P is free
2 any equality

x1x2 · · · xn = y1y2 · · · ym, xi , yj ∈ X

implies n = m and xi = yi for all i ∈ n̂
3 for any w ∈ A∗ it holds that

pw ,wq ∈ P for some p, q ∈ P ⇒ w ∈ P

Corollary: An intersection of free submonoids of A∗ is free.
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Preliminaries Equations in three unknowns Solutions and graphs

Defect theorem

Let X ⊂ A∗ and F the minimal free submonoid containing X . The
free hull of X is the code generating F .

Theorem (Defect theorem)

The free hull Y of a finite subset X ⊂ A∗, which is not a code,
satisfies

#Y ≤ #X − 1 .

Proof: define α : X → Y :

x ∈ X → α(x) = y ∈ Y such that x ∈ yY ∗

α is surjective and not injective ⇒ statement holds

Corollary: Each pair of words x , y ∈ A∗ is a code, unless x and y
are powers of a single word z ∈ A∗.
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Preliminaries Equations in three unknowns Solutions and graphs

Primitive words

A word x ∈ A∗ is primitive if it is not a power of another word.

Proposition
Let x , y ∈ A∗. If

xn = ym m, n ≥ 0 ,

there exists a word z such that x , y ∈ z∗.

In particular, for each word w ∈ A+ there exists a unique primitive
word x such that w ∈ x∗.

This can be refined as:

Proposition

Let x , y ∈ A∗, n = |x |,m = |y |, d = gcd(n,m). If two powers xp

and yq have a common prefix of length at least n + m − d, then
x , y ∈ z∗ for some z.
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Preliminaries Equations in three unknowns Solutions and graphs

Conjugacy

Two words x , y ∈ A∗ are conjugate if there exist u, v ∈ A∗ such
that

x = uv , y = vu .

Conjugacy - an equivalence relation on A∗, classes generated by a
cyclic permutation.

Proposition

Two words x , y ∈ A+ are conjugate iff there exists z ∈ A∗ such
that

xz = zy .

More precisely, this equality holds iff there exist u, v ∈ A∗ such that

x = uv , y = vu, z ∈ u(vu)∗ .
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Equation in words - motivation

Consider two commuting words x , y ∈ A∗,

xy = yx ,

it holds

x = un, y = up, for some u ∈ A∗, n, p ≥ 0 .

The simplest example of equation in words:

x , y · · · unknowns

xy = yx · · · equation

morphism α defined by α(x) = un, α(y) = up satisfies
α(xy) = α(yx) · · · solution of xy = yx
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Preliminaries Equations in three unknowns Solutions and graphs

Definitions I

alphabet of unknowns · · · Ξ fixed, finite, nonempty set

system of equations S · · · set of pairs (e, e ′) ∈ Ξ∗ × Ξ∗

solution of S · · · any morphism such that α(e) = α(e ′) for all
pairs (e, e ′) ∈ S

solving finite system of equations ⇔ solving single equation
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Preliminaries Equations in three unknowns Solutions and graphs

Definitions II

Morphism α : Ξ∗ → A∗ can be:

total · · · all letters of A occur in α(x) for some x ∈ Ξ

nonerasing · · · α(x) 6= 1 for all x ∈ Ξ

cyclic · · · exists v ∈ A∗ such that α(x) ∈ v∗ for all x ∈ Ξ

Let α1 : Ξ∗ → A∗1, α2 : Ξ∗ → A∗2 be total morphisms. If there is a
nonerasing morphism θ : A∗1 → A∗2, α2 = θ ◦ α1, then α1 divides α2
(α1 6 α2)

α1 and α2 are equivalent (α1 ≈ α2), if α1 6 α2 and α2 6 α1.
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Preliminaries Equations in three unknowns Solutions and graphs

Equations I

Proposition
All solutions α : Ξ∗ → A∗ of the equation

(xyz , zxy)

are of the form

α(x) = (uv)iu, α(y) = v(uv)j , α(z) = (uv)k ,

where u, v ∈ A∗ and i , j , k ≥ 0.

Proof: define Θ = {a, b}, ϕ : Θ∗ → Ξ∗, ϕ(a) = xy , ϕ(b) = z .

α solution of (xyz , zxy) ⇔ α ◦ ϕ solution of (ab, ba)

→ defect theorem
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Preliminaries Equations in three unknowns Solutions and graphs

Equations II

Proposition
All solutions α : Ξ∗ → A∗ of the equation

(xy2x , zt2z)

are of the form

α(x) = (uv)iu, α(y) = v(uv)j , α(z) = (uv)ku, α(t) = v(uv)l ,

where u, v ∈ A∗ and i , j , k, l ≥ 0 such that i + j = k + l .

Proof: set α(x) = a, α(y) = b, α(z) = c , α(t) = d

equation splits into ab = cd , ba = dc
WLOG |a| ≥ |c|, a = ce, d = eb

→ bce = ebc (previous case)
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Equations III

Proposition
All solutions α : Ξ∗ → A∗ of the equation

((xy)mx , zn), m > 1, n > 1

are cyclic.

Proof: α(xy)m and α(z)n have long common prefix ⇒ powers of
the same word

α(xy) = ui , α(z) = uj implies

α(x) = ujn−im, α(y) = ui−(jn−im) .

16 / 29
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Equations IV

Proposition
All solutions α : Ξ∗ → A∗ of the equation

(xyx , zn), n > 1

are of the form

α(x) = (uv)iu, α(y) = vu
(
(uv)i+1u

)n−2uv , α(z) = (uv)i+1u ,

where u, v ∈ A∗ and i ≥ 0.

Proof: if α noncyclic, then |α(x)| < |α(z)|

α(x)α(y)α(x) = α(z)n ⇒ α(z) = α(x)w = tα(x) for some
w , t ∈ A∗

→ w and t conjugated
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Main theorem

Theorem
For all integers n,m, p ≥ 2, the equation

(xnym, zp)

admits only cyclic solutions.

Proof: by contradiction

suppose there is A finite, u, v ,w ∈ A∗ not powers of a common
word, n,m, p ≥ 2 such that umvn = wp and w has minimal length
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Proof I

noncyclic solution → common prefix (suffix) of wp and un (vm)
has bounded length:

(n − 1)|v | < |w |
(m − 1)|u| < |w |

trivial cases:

p ≥ 4

p = 3 and n,m ≥ 3

→ contradiction
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Proof II

1 n = 2,m ≥ 3, p = 3.

It holds |w | < |u2| < 2|w |, and

w1w2w1 = u2, w2w1w2 = vm, where w = w1w2 .

→ previous case (xyx , zn) → contradiction
2 n = m = 2, p = 3. Similar argument is used for

w1w2w1 = u2, w2w1w2 = v2 .

3 n,m ≥ 2, p = 2. We may assume w = unv1 = v2(v1v2)m−1,
where v = v1v2.

→ unv21 = (v2v1)m and |w | > |v2v1|

→ contradiction with the minimality of |w |
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Parametrization

In previous examples - all solutions can be described by finite
number of parameters (words, powers) · · · parametrizable equation

Hmelevskii (1976):

all equations in 3 unknowns are parametrizable

equations with 4 or more unknowns are not parametrizable
(gave an example (xyz , ztx))
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Preliminaries Equations in three unknowns Solutions and graphs

Principal solutions

Let α : Ξ∗ → A∗ solve (e, e ′). It is principal if for all solutions
β : Ξ∗ → B∗ holds

β 6 α ⇒ β ≈ α .

Any solution can be divided by some (unique) principal solution.

How to find principal solutions?

we define fundamental solutions

those are “easy” to get

we show that fundamental solutions ≈ principal solutions
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Fundamental solutions I

We define following morphisms of Ξ∗ into Ξ∗:

ϕxx ′(y) =

{
y if y ∈ Ξ \ {x ′}
xx ′ if y = x ′

εxx ′(y) =

{
y if y ∈ Ξ \ {x ′}
x if y = x ′

consider an equation (e, e ′) ∈ Ξ∗ × Ξ∗

suppose e = gxh, e ′ = gx ′h′, where x , x ′ ∈ Ξ, x 6= x ′,
g , g ′, h, h′ ∈ Ξ∗

ϕxx ′ , ϕx ′x are regular elementary transformations attached to
(e, e ′)
εxx ′ is singular elementary transformation attached to (e, e ′)
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Fundamental solutions II

A transformation attached to (e, e ′) is any product ϕn · · ·ϕ1 such
that for all i ∈ n̂, ϕi is an elementary transformation attached to

(ϕi−1 · · ·ϕ1(e), ϕi−1 · · ·ϕ1(e ′)) .

Suppose ϕ attached to (e, e ′) satisfies ϕ(e) = ϕ(e ′). Then ϕ is
called a fundamental solution of (e, e ′).
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Preliminaries Equations in three unknowns Solutions and graphs

Fundamental solutions III

Example

Consider the equation (xyz , xzx):

(x |yz , x |zx)
ϕzy→ (xz |yz , xz |x)

ϕyx→ (yxzy |z , yxzy |x)
εzx→ (yzzyz , yzzyz) ,

hence ϕ = εzxϕyxϕzy is a fundamental solution of (xyz , xzx). It is
defined as

ϕ(x) = yz , ϕ(y) = zy , ϕ(z) = z .
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Equivalence

Proposition

Each nonerasing solution α : Ξ∗ → A∗ of the equation (e, e ′) has a
unique factorization

α = θϕn · · ·ϕ1 ,

where ϕn · · ·ϕ1 is a factorization of a fundamental solution of
(e, e ′) into elementary transformations and θ is nonerasing
morphism.

Note: ϕn · · ·ϕ1 is also a principal solution → each solution of a
given equation can be divided by some unique principal solution

27 / 29



Preliminaries Equations in three unknowns Solutions and graphs

Equivalence

Proposition

Each nonerasing solution α : Ξ∗ → A∗ of the equation (e, e ′) has a
unique factorization

α = θϕn · · ·ϕ1 ,

where ϕn · · ·ϕ1 is a factorization of a fundamental solution of
(e, e ′) into elementary transformations and θ is nonerasing
morphism.

Note: ϕn · · ·ϕ1 is also a principal solution → each solution of a
given equation can be divided by some unique principal solution

27 / 29



Preliminaries Equations in three unknowns Solutions and graphs

Graph associated with an equation

denote by V the subset of Ξ∗ × Ξ∗ containing (1, 1) and all
pairs (f , f ′) where f , f ′ nonempty not having common prefix

let E be a set of edges: (f , f ′)
ϕ→ (g , g ′) ∈ G ⇔ ϕ is an

elementary transformation attached to (f , f ′) satisfying
ϕ(f ) = hg , ϕ(f ′) = hg ′ with h as long as possible

the graph associated with (e, e ′) is defined as induced
subgraph G ′ of G = (V ,E ) containing only vertices (e, e ′),
(1, 1) and those “in between”

examples . . .
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Preliminaries Equations in three unknowns Solutions and graphs

Remarks

Denote:

|f |x = #{ occurences of x ∈ Ξ in f ∈ Ξ∗}

‖f ‖ = max{|f |x , x ∈ Ξ}

Proposition
Assume that

|e|x |e ′|x ≤ 1 for all x ∈ Ξ,

max{‖e‖, ‖e ′‖} ≤ 2.

Then the graph associated with (e, e ′) is finite.

Remarks:

similar procedure for solving equations with constants

Makanin algorithm - decides if a solution exists even if the
graph is infinite, nondeterministic but always decides
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